Spaces of $\omega $-limit sets of graph maps
Fundamenta Mathematicae, Tome 196 (2007) no. 1, pp. 91-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(X,f)$ be a dynamical system. In general the set of all $\omega $-limit sets of $f$ is not closed in the hyperspace of closed subsets of $X$. In this paper we study the case when $X$ is a graph, and show that the family of $\omega $-limit sets of a graph map is closed with respect to the Hausdorff metric.
DOI : 10.4064/fm196-1-2
Keywords: dynamical system general set omega limit sets closed hyperspace closed subsets paper study graph family omega limit sets graph map closed respect hausdorff metric

Jie-Hua Mai 1 ; Song Shao 2

1 Institute of Mathematics Shantou University Shantou, Guangdong, 515063, P.R. China
2 Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, P.R. China
@article{10_4064_fm196_1_2,
     author = {Jie-Hua Mai and Song Shao},
     title = {Spaces of $\omega $-limit sets of graph maps},
     journal = {Fundamenta Mathematicae},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {196},
     number = {1},
     year = {2007},
     doi = {10.4064/fm196-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm196-1-2/}
}
TY  - JOUR
AU  - Jie-Hua Mai
AU  - Song Shao
TI  - Spaces of $\omega $-limit sets of graph maps
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 91
EP  - 100
VL  - 196
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm196-1-2/
DO  - 10.4064/fm196-1-2
LA  - en
ID  - 10_4064_fm196_1_2
ER  - 
%0 Journal Article
%A Jie-Hua Mai
%A Song Shao
%T Spaces of $\omega $-limit sets of graph maps
%J Fundamenta Mathematicae
%D 2007
%P 91-100
%V 196
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm196-1-2/
%R 10.4064/fm196-1-2
%G en
%F 10_4064_fm196_1_2
Jie-Hua Mai; Song Shao. Spaces of $\omega $-limit sets of graph maps. Fundamenta Mathematicae, Tome 196 (2007) no. 1, pp. 91-100. doi : 10.4064/fm196-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm196-1-2/

Cité par Sources :