Strong initial segments of models of $I\Delta_0$
Fundamenta Mathematicae, Tome 195 (2007) no. 2, pp. 155-176
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
McAloon showed that if ${\cal A}$ is a nonstandard model of
$I\Delta_0$, then some initial segment of ${\cal A}$ is a nonstandard model of PA. Sommer
and D'Aquino characterized, in terms of the Wainer functions, the
elements that can belong to such an initial segment. The characterization used work of Ketonen
and Solovay, and Paris. Here we give conditions on a model ${\cal A}$ of $I\Delta_0$ guaranteeing that there is an
$n$-elementary initial segment that is a nonstandard model of PA. We also characterize the elements that can be included.
Keywords:
mcaloon showed cal nonstandard model delta initial segment cal nonstandard model sommer daquino characterized terms wainer functions elements belong initial segment characterization work ketonen solovay paris here conditions model cal delta guaranteeing there n elementary initial segment nonstandard model characterize elements included
Affiliations des auteurs :
Paola D'Aquino 1 ; Julia F. Knight 2
@article{10_4064_fm195_2_4,
author = {Paola D'Aquino and Julia F. Knight},
title = {Strong initial segments of models of $I\Delta_0$},
journal = {Fundamenta Mathematicae},
pages = {155--176},
year = {2007},
volume = {195},
number = {2},
doi = {10.4064/fm195-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm195-2-4/}
}
Paola D'Aquino; Julia F. Knight. Strong initial segments of models of $I\Delta_0$. Fundamenta Mathematicae, Tome 195 (2007) no. 2, pp. 155-176. doi: 10.4064/fm195-2-4
Cité par Sources :