Algebraic lattices are complete sublattices of the clone lattice over an infinite set
Fundamenta Mathematicae, Tome 195 (2007) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The clone lattice $\mathop{\rm Cl}(X)$ over an infinite set $X$ is a complete algebraic lattice with $2^{|X|}$ compact elements. We show that every algebraic lattice with at most $2^{|X|}$ compact elements is a complete sublattice of $\mathop{\rm Cl}(X)$.
DOI : 10.4064/fm195-1-1
Keywords: clone lattice mathop infinite set complete algebraic lattice compact elements every algebraic lattice compact elements complete sublattice mathop

Michael Pinsker 1

1 Institut für Diskrete Mathematik und Geometrie Technische Universität Wien Wiedner Hauptstraße 8-10/104 A-1040 Wien, Austria
@article{10_4064_fm195_1_1,
     author = {Michael Pinsker},
     title = {Algebraic lattices are complete sublattices
 of the clone lattice over an infinite set},
     journal = {Fundamenta Mathematicae},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {195},
     number = {1},
     year = {2007},
     doi = {10.4064/fm195-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm195-1-1/}
}
TY  - JOUR
AU  - Michael Pinsker
TI  - Algebraic lattices are complete sublattices
 of the clone lattice over an infinite set
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 1
EP  - 10
VL  - 195
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm195-1-1/
DO  - 10.4064/fm195-1-1
LA  - en
ID  - 10_4064_fm195_1_1
ER  - 
%0 Journal Article
%A Michael Pinsker
%T Algebraic lattices are complete sublattices
 of the clone lattice over an infinite set
%J Fundamenta Mathematicae
%D 2007
%P 1-10
%V 195
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm195-1-1/
%R 10.4064/fm195-1-1
%G en
%F 10_4064_fm195_1_1
Michael Pinsker. Algebraic lattices are complete sublattices
 of the clone lattice over an infinite set. Fundamenta Mathematicae, Tome 195 (2007) no. 1, pp. 1-10. doi : 10.4064/fm195-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm195-1-1/

Cité par Sources :