Algebraic lattices are complete sublattices
of the clone lattice over an infinite set
Fundamenta Mathematicae, Tome 195 (2007) no. 1, pp. 1-10
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The clone lattice $\mathop{\rm Cl}(X)$ over an infinite set $X$ is a
complete algebraic lattice with $2^{|X|}$ compact elements.
We show that every algebraic lattice with
at most $2^{|X|}$ compact elements
is a complete sublattice of $\mathop{\rm Cl}(X)$.
Keywords:
clone lattice mathop infinite set complete algebraic lattice compact elements every algebraic lattice compact elements complete sublattice mathop
Affiliations des auteurs :
Michael Pinsker 1
@article{10_4064_fm195_1_1,
author = {Michael Pinsker},
title = {Algebraic lattices are complete sublattices
of the clone lattice over an infinite set},
journal = {Fundamenta Mathematicae},
pages = {1--10},
year = {2007},
volume = {195},
number = {1},
doi = {10.4064/fm195-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm195-1-1/}
}
TY - JOUR AU - Michael Pinsker TI - Algebraic lattices are complete sublattices of the clone lattice over an infinite set JO - Fundamenta Mathematicae PY - 2007 SP - 1 EP - 10 VL - 195 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm195-1-1/ DO - 10.4064/fm195-1-1 LA - en ID - 10_4064_fm195_1_1 ER -
Michael Pinsker. Algebraic lattices are complete sublattices of the clone lattice over an infinite set. Fundamenta Mathematicae, Tome 195 (2007) no. 1, pp. 1-10. doi: 10.4064/fm195-1-1
Cité par Sources :