Inaccessible cardinals without the axiom of choice
Fundamenta Mathematicae, Tome 194 (2007) no. 2, pp. 179-189
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider four notions of strong inaccessibility that are
equivalent in $\mathsf {ZFC}$ and show that they are not equivalent in
$\mathsf{ZF}$.
Keywords:
consider notions strong inaccessibility equivalent mathsf zfc equivalent mathsf
Affiliations des auteurs :
Andreas Blass 1 ; Ioanna M. Dimitriou 2 ; Benedikt Löwe 3
@article{10_4064_fm194_2_3,
author = {Andreas Blass and Ioanna M. Dimitriou and Benedikt L\"owe},
title = {Inaccessible cardinals without the axiom of choice},
journal = {Fundamenta Mathematicae},
pages = {179--189},
year = {2007},
volume = {194},
number = {2},
doi = {10.4064/fm194-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-2-3/}
}
TY - JOUR AU - Andreas Blass AU - Ioanna M. Dimitriou AU - Benedikt Löwe TI - Inaccessible cardinals without the axiom of choice JO - Fundamenta Mathematicae PY - 2007 SP - 179 EP - 189 VL - 194 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm194-2-3/ DO - 10.4064/fm194-2-3 LA - en ID - 10_4064_fm194_2_3 ER -
Andreas Blass; Ioanna M. Dimitriou; Benedikt Löwe. Inaccessible cardinals without the axiom of choice. Fundamenta Mathematicae, Tome 194 (2007) no. 2, pp. 179-189. doi: 10.4064/fm194-2-3
Cité par Sources :