Generic absoluteness under projective forcing
Fundamenta Mathematicae, Tome 194 (2007) no. 2, pp. 95-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the preservation of the property of $\bf LR$ being a Solovay
model under projective ccc forcing extensions. We compute the
exact consistency strength of the generic absoluteness of $\bf LR$
under forcing with projective ccc partial orderings and, as an
application, we build models in which Martin's Axiom holds for
${\mathop{\Sigma}\limits_{\textstyle\sim}}{}^1_n$ partial orderings, but it fails for the
${\mathop{\Sigma}\limits_{\textstyle\sim}}{}^1_{n+1}$.
Keywords:
study preservation property being solovay model under projective ccc forcing extensions compute exact consistency strength generic absoluteness under forcing projective ccc partial orderings application build models which martins axiom holds mathop sigma limits textstyle sim partial orderings fails mathop sigma limits textstyle sim
Affiliations des auteurs :
Joan Bagaria 1 ; Roger Bosch 2
@article{10_4064_fm194_2_1,
author = {Joan Bagaria and Roger Bosch},
title = {Generic absoluteness under projective forcing},
journal = {Fundamenta Mathematicae},
pages = {95--120},
publisher = {mathdoc},
volume = {194},
number = {2},
year = {2007},
doi = {10.4064/fm194-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-2-1/}
}
Joan Bagaria; Roger Bosch. Generic absoluteness under projective forcing. Fundamenta Mathematicae, Tome 194 (2007) no. 2, pp. 95-120. doi: 10.4064/fm194-2-1
Cité par Sources :