Classification of bounded Baire class $\xi $ functions
Fundamenta Mathematicae, Tome 236 (2017) no. 2, pp. 141-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Kechris and Louveau showed that each real-valued bounded Baire class 1 function defined on a compact metric space can be written as an alternating sum of a decreasing countable transfinite sequence of upper semicontinuous functions. Moreover, the length of the shortest such sequence is essentially the same as the value of certain natural ranks they defined on the Baire class 1 functions. They also introduced the notion of pseudouniform convergence to generate some classes of bounded Baire class 1 functions from others. The main aim of this paper is to generalize their results to Baire class $\xi $ functions. For our proofs to go through, it was essential to first obtain similar results for Baire class 1 functions defined on not necessarily compact Polish spaces. Using these new classifications of bounded Baire class $\xi $ functions, one can define natural ranks on these classes. We show that these ranks essentially coincide with those defined by Elekes et al. (2014).
DOI : 10.4064/fm194-1-2016
Keywords: kechris louveau showed each real valued bounded baire class nbsp function defined compact metric space written alternating sum decreasing countable transfinite sequence upper semicontinuous functions moreover length shortest sequence essentially the value certain natural ranks defined baire class nbsp functions introduced notion pseudouniform convergence generate classes bounded baire class nbsp functions others main paper generalize their results baire class functions proofs through essential first obtain similar results baire class nbsp functions defined necessarily compact polish spaces using these classifications bounded baire class functions define natural ranks these classes these ranks essentially coincide those defined elekes nbsp nbsp

Viktor Kiss 1

1 Department of Analysis Eötvös Loránd University Pázmány Péter Sétány 1/c H-1117 Budapest, Hungary
@article{10_4064_fm194_1_2016,
     author = {Viktor Kiss},
     title = {Classification of bounded {Baire} class $\xi $ functions},
     journal = {Fundamenta Mathematicae},
     pages = {141--160},
     publisher = {mathdoc},
     volume = {236},
     number = {2},
     year = {2017},
     doi = {10.4064/fm194-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-2016/}
}
TY  - JOUR
AU  - Viktor Kiss
TI  - Classification of bounded Baire class $\xi $ functions
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 141
EP  - 160
VL  - 236
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-2016/
DO  - 10.4064/fm194-1-2016
LA  - en
ID  - 10_4064_fm194_1_2016
ER  - 
%0 Journal Article
%A Viktor Kiss
%T Classification of bounded Baire class $\xi $ functions
%J Fundamenta Mathematicae
%D 2017
%P 141-160
%V 236
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-2016/
%R 10.4064/fm194-1-2016
%G en
%F 10_4064_fm194_1_2016
Viktor Kiss. Classification of bounded Baire class $\xi $ functions. Fundamenta Mathematicae, Tome 236 (2017) no. 2, pp. 141-160. doi : 10.4064/fm194-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-2016/

Cité par Sources :