On approximation of homeomorphisms of a Cantor set
Fundamenta Mathematicae, Tome 194 (2007) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We continue the study of topological properties of the group ${\rm Homeo} (X)$ of all homeomorphisms of a Cantor set $X$ with respect to the uniform topology $\tau$, which was started by Bezuglyi, Dooley, Kwiatkowski and Medynets. We prove that the set of periodic homeomorphisms is $\tau$-dense in ${\rm Homeo}(X)$ and deduce from this result that the topological group $({\rm Homeo}(X), \tau)$ has the Rokhlin property, i.e., there exists a homeomorphism whose conjugacy class is $\tau$-dense in ${\rm Homeo}(X)$. We also show that for any homeomorphism $T$ the topological full group $[[T]]$ is $\tau$-dense in the full group $[T]$.
DOI : 10.4064/fm194-1-1
Keywords: continue study topological properties group homeo homeomorphisms cantor set respect uniform topology tau which started bezuglyi dooley kwiatkowski medynets prove set periodic homeomorphisms tau dense homeo deduce result topological group homeo tau has rokhlin property there exists homeomorphism whose conjugacy class tau dense homeo homeomorphism topological full group tau dense full group

Konstantin Medynets 1

1 Department of Mathematics Institute for Low Temperature Physics 47 Lenin ave. 61103 Kharkov, Ukraine
@article{10_4064_fm194_1_1,
     author = {Konstantin Medynets},
     title = {On approximation of homeomorphisms of
 a {Cantor} set},
     journal = {Fundamenta Mathematicae},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {194},
     number = {1},
     year = {2007},
     doi = {10.4064/fm194-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-1/}
}
TY  - JOUR
AU  - Konstantin Medynets
TI  - On approximation of homeomorphisms of
 a Cantor set
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 1
EP  - 13
VL  - 194
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-1/
DO  - 10.4064/fm194-1-1
LA  - en
ID  - 10_4064_fm194_1_1
ER  - 
%0 Journal Article
%A Konstantin Medynets
%T On approximation of homeomorphisms of
 a Cantor set
%J Fundamenta Mathematicae
%D 2007
%P 1-13
%V 194
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-1/
%R 10.4064/fm194-1-1
%G en
%F 10_4064_fm194_1_1
Konstantin Medynets. On approximation of homeomorphisms of
 a Cantor set. Fundamenta Mathematicae, Tome 194 (2007) no. 1, pp. 1-13. doi : 10.4064/fm194-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-1/

Cité par Sources :