Systolic groups acting on complexes with no flats
are word-hyperbolic
Fundamenta Mathematicae, Tome 193 (2007) no. 3, pp. 277-283
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if a group acts properly and cocompactly on a systolic complex, in whose 1-skeleton there is no isometrically embedded copy of the 1-skeleton of an equilaterally triangulated Euclidean plane, then the group is word-hyperbolic. This was conjectured by D. T. Wise.
Keywords:
prove group acts properly cocompactly systolic complex whose skeleton there isometrically embedded copy skeleton equilaterally triangulated euclidean plane group word hyperbolic conjectured wise
Affiliations des auteurs :
Piotr Przytycki  1
@article{10_4064_fm193_3_4,
author = {Piotr Przytycki},
title = {Systolic groups acting on complexes with no flats
are word-hyperbolic},
journal = {Fundamenta Mathematicae},
pages = {277--283},
year = {2007},
volume = {193},
number = {3},
doi = {10.4064/fm193-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm193-3-4/}
}
Piotr Przytycki. Systolic groups acting on complexes with no flats are word-hyperbolic. Fundamenta Mathematicae, Tome 193 (2007) no. 3, pp. 277-283. doi: 10.4064/fm193-3-4
Cité par Sources :