Systolic groups acting on complexes with no flats are word-hyperbolic
Fundamenta Mathematicae, Tome 193 (2007) no. 3, pp. 277-283.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if a group acts properly and cocompactly on a systolic complex, in whose 1-skeleton there is no isometrically embedded copy of the 1-skeleton of an equilaterally triangulated Euclidean plane, then the group is word-hyperbolic. This was conjectured by D. T. Wise.
DOI : 10.4064/fm193-3-4
Keywords: prove group acts properly cocompactly systolic complex whose skeleton there isometrically embedded copy skeleton equilaterally triangulated euclidean plane group word hyperbolic conjectured wise

Piotr Przytycki 1

1 Faculty of Mathematics, Informatics and Mechanics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_fm193_3_4,
     author = {Piotr Przytycki},
     title = {Systolic groups acting on complexes with no flats
 are word-hyperbolic},
     journal = {Fundamenta Mathematicae},
     pages = {277--283},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2007},
     doi = {10.4064/fm193-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm193-3-4/}
}
TY  - JOUR
AU  - Piotr Przytycki
TI  - Systolic groups acting on complexes with no flats
 are word-hyperbolic
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 277
EP  - 283
VL  - 193
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm193-3-4/
DO  - 10.4064/fm193-3-4
LA  - en
ID  - 10_4064_fm193_3_4
ER  - 
%0 Journal Article
%A Piotr Przytycki
%T Systolic groups acting on complexes with no flats
 are word-hyperbolic
%J Fundamenta Mathematicae
%D 2007
%P 277-283
%V 193
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm193-3-4/
%R 10.4064/fm193-3-4
%G en
%F 10_4064_fm193_3_4
Piotr Przytycki. Systolic groups acting on complexes with no flats
 are word-hyperbolic. Fundamenta Mathematicae, Tome 193 (2007) no. 3, pp. 277-283. doi : 10.4064/fm193-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm193-3-4/

Cité par Sources :