Brunnian links
Fundamenta Mathematicae, Tome 193 (2007) no. 3, pp. 259-276
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A Brunnian link is a set of $n$ linked loops such that every proper sublink is trivial. Simple Brunnian links have a natural algebraic representation. This is used to determine the form, length and number of minimal simple Brunnian links. Braids are used to investigate when two algebraic words represent equivalent simple Brunnian links that differ only in the arrangement of the component loops.
Keywords:
brunnian link set linked loops every proper sublink trivial simple brunnian links have natural algebraic representation determine form length number minimal simple brunnian links braids investigate algebraic words represent equivalent simple brunnian links differ only arrangement component loops
Affiliations des auteurs :
Paul Gartside 1 ; Sina Greenwood 2
@article{10_4064_fm193_3_3,
author = {Paul Gartside and Sina Greenwood},
title = {Brunnian links},
journal = {Fundamenta Mathematicae},
pages = {259--276},
publisher = {mathdoc},
volume = {193},
number = {3},
year = {2007},
doi = {10.4064/fm193-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm193-3-3/}
}
Paul Gartside; Sina Greenwood. Brunnian links. Fundamenta Mathematicae, Tome 193 (2007) no. 3, pp. 259-276. doi: 10.4064/fm193-3-3
Cité par Sources :