Generic sets in definably compact groups
Fundamenta Mathematicae, Tome 193 (2007) no. 2, pp. 153-170.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A subset $X$ of a group $G$ is called left generic if finitely many left translates of $X$ cover $G$. Our main result is that if $G$ is a definably compact group in an o-minimal structure and a definable $X\subseteq G$ is not right generic then its complement is left generic.Among our additional results are (i) a new condition equivalent to definable compactness, (ii) the existence of a finitely additive invariant measure on definable sets in a definably compact group $G$ in the case where $G ={}^{*}H$ for some compact Lie group $H$ (generalizing results from \cite{BO2}), and (iii) in a definably compact group every definable subsemi-group is a subgroup.Our main result uses recent work of Alf Dolich on forking in o-minimal stuctures.
DOI : 10.4064/fm193-2-4
Keywords: subset group called generic finitely many translates cover main result definably compact group o minimal structure definable subseteq right generic its complement generic among additional results condition equivalent definable compactness existence finitely additive invariant measure definable sets definably compact group where * compact lie group generalizing results nbsp cite iii definably compact group every definable subsemi group subgroup main result uses recent work alf dolich forking o minimal stuctures

Ya'acov Peterzil 1 ; Anand Pillay 2

1 Department of Mathematics University of Haifa Haifa, Israel
2 Department of Mathematics UIUC Urbana, IL 61801, U.S.A. and School of Mathematics University of Leeds Leeds LS2 9JT, UK
@article{10_4064_fm193_2_4,
     author = {Ya'acov Peterzil and Anand Pillay},
     title = {Generic sets in definably compact  groups},
     journal = {Fundamenta Mathematicae},
     pages = {153--170},
     publisher = {mathdoc},
     volume = {193},
     number = {2},
     year = {2007},
     doi = {10.4064/fm193-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm193-2-4/}
}
TY  - JOUR
AU  - Ya'acov Peterzil
AU  - Anand Pillay
TI  - Generic sets in definably compact  groups
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 153
EP  - 170
VL  - 193
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm193-2-4/
DO  - 10.4064/fm193-2-4
LA  - en
ID  - 10_4064_fm193_2_4
ER  - 
%0 Journal Article
%A Ya'acov Peterzil
%A Anand Pillay
%T Generic sets in definably compact  groups
%J Fundamenta Mathematicae
%D 2007
%P 153-170
%V 193
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm193-2-4/
%R 10.4064/fm193-2-4
%G en
%F 10_4064_fm193_2_4
Ya'acov Peterzil; Anand Pillay. Generic sets in definably compact  groups. Fundamenta Mathematicae, Tome 193 (2007) no. 2, pp. 153-170. doi : 10.4064/fm193-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm193-2-4/

Cité par Sources :