Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Jan Pelant 1 ; Petr Holický 1 ; Ondřej F. K. Kalenda 1
@article{10_4064_fm192_3_4, author = {Jan Pelant and Petr Holick\'y and Ond\v{r}ej F. K. Kalenda}, title = {$C(K)$ spaces which cannot be uniformly embedded into $c_0({\mit\Gamma} )$}, journal = {Fundamenta Mathematicae}, pages = {245--254}, publisher = {mathdoc}, volume = {192}, number = {3}, year = {2006}, doi = {10.4064/fm192-3-4}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-4/} }
TY - JOUR AU - Jan Pelant AU - Petr Holický AU - Ondřej F. K. Kalenda TI - $C(K)$ spaces which cannot be uniformly embedded into $c_0({\mit\Gamma} )$ JO - Fundamenta Mathematicae PY - 2006 SP - 245 EP - 254 VL - 192 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-4/ DO - 10.4064/fm192-3-4 LA - en ID - 10_4064_fm192_3_4 ER -
%0 Journal Article %A Jan Pelant %A Petr Holický %A Ondřej F. K. Kalenda %T $C(K)$ spaces which cannot be uniformly embedded into $c_0({\mit\Gamma} )$ %J Fundamenta Mathematicae %D 2006 %P 245-254 %V 192 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-4/ %R 10.4064/fm192-3-4 %G en %F 10_4064_fm192_3_4
Jan Pelant; Petr Holický; Ondřej F. K. Kalenda. $C(K)$ spaces which cannot be uniformly embedded into $c_0({\mit\Gamma} )$. Fundamenta Mathematicae, Tome 192 (2006) no. 3, pp. 245-254. doi : 10.4064/fm192-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-4/
Cité par Sources :