$C(K)$ spaces which cannot be uniformly
embedded into $c_0({\mit\Gamma} )$
Fundamenta Mathematicae, Tome 192 (2006) no. 3, pp. 245-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give two examples of scattered compact spaces $K$ such that $C(K)$ is not uniformly homeomorphic to any subset of $c_0({\mit\Gamma} )$ for any set ${\mit\Gamma} $. The first one is $[0,\omega _1]$ and hence it has the smallest possible cardinality, the other one has the smallest possible height $\omega _0+1$.
Keywords:
examples scattered compact spaces uniformly homeomorphic subset mit gamma set mit gamma first omega hence has smallest possible cardinality other has smallest possible height omega
Affiliations des auteurs :
Jan Pelant 1 ; Petr Holický 1 ; Ondřej F. K. Kalenda 1
@article{10_4064_fm192_3_4,
author = {Jan Pelant and Petr Holick\'y and Ond\v{r}ej F. K. Kalenda},
title = {$C(K)$ spaces which cannot be uniformly
embedded into $c_0({\mit\Gamma} )$},
journal = {Fundamenta Mathematicae},
pages = {245--254},
publisher = {mathdoc},
volume = {192},
number = {3},
year = {2006},
doi = {10.4064/fm192-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-4/}
}
TY - JOUR
AU - Jan Pelant
AU - Petr Holický
AU - Ondřej F. K. Kalenda
TI - $C(K)$ spaces which cannot be uniformly
embedded into $c_0({\mit\Gamma} )$
JO - Fundamenta Mathematicae
PY - 2006
SP - 245
EP - 254
VL - 192
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-4/
DO - 10.4064/fm192-3-4
LA - en
ID - 10_4064_fm192_3_4
ER -
%0 Journal Article
%A Jan Pelant
%A Petr Holický
%A Ondřej F. K. Kalenda
%T $C(K)$ spaces which cannot be uniformly
embedded into $c_0({\mit\Gamma} )$
%J Fundamenta Mathematicae
%D 2006
%P 245-254
%V 192
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-4/
%R 10.4064/fm192-3-4
%G en
%F 10_4064_fm192_3_4
Jan Pelant; Petr Holický; Ondřej F. K. Kalenda. $C(K)$ spaces which cannot be uniformly
embedded into $c_0({\mit\Gamma} )$. Fundamenta Mathematicae, Tome 192 (2006) no. 3, pp. 245-254. doi: 10.4064/fm192-3-4
Cité par Sources :