Extension of functions with small oscillation
Fundamenta Mathematicae, Tome 192 (2006) no. 2, pp. 183-193.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A classical theorem of Kuratowski says that every Baire one function on a $G_{\delta }$ subspace of a Polish ($=$ separable completely metrizable) space $X$ can be extended to a Baire one function on $X$. Kechris and Louveau introduced a finer gradation of Baire one functions into small Baire classes. A Baire one function $f$ is assigned into a class in this hierarchy depending on its oscillation index $\beta (f)$. We prove a refinement of Kuratowski's theorem: if $Y$ is a subspace of a metric space $X$ and $f$ is a real-valued function on $Y$ such that $\beta _{Y}(f)\omega ^{\alpha }$, $\alpha \omega _{1}$, then $f$ has an extension $F$ to $X$ so that $\beta _{X}(F)\leq \omega ^{\alpha }$. We also show that if $f$ is a continuous real-valued function on $Y,$ then $f$ has an extension $F$ to $X$ so that $\beta _{X}(F) \leq 3.$ An example is constructed to show that this result is optimal.
DOI : 10.4064/fm192-2-6
Keywords: classical theorem kuratowski says every baire function delta subspace polish separable completely metrizable space extended baire function kechris louveau introduced finer gradation baire functions small baire classes baire function assigned class hierarchy depending its oscillation index beta prove refinement kuratowskis theorem subspace metric space real valued function beta omega alpha alpha omega has extension beta leq omega alpha continuous real valued function has extension beta leq example constructed result optimal

Denny H. Leung 1 ; Wee-Kee Tang 2

1 Department of Mathematics National University of Singapore 2 Science Drive 2 Singapore 117543
2 Mathematics and Mathematics Education National Institute of Education Nanyang Technological University 1 Nanyang Walk Singapore 637616
@article{10_4064_fm192_2_6,
     author = {Denny H. Leung and Wee-Kee Tang},
     title = {Extension of functions with small oscillation},
     journal = {Fundamenta Mathematicae},
     pages = {183--193},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2006},
     doi = {10.4064/fm192-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-2-6/}
}
TY  - JOUR
AU  - Denny H. Leung
AU  - Wee-Kee Tang
TI  - Extension of functions with small oscillation
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 183
EP  - 193
VL  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm192-2-6/
DO  - 10.4064/fm192-2-6
LA  - en
ID  - 10_4064_fm192_2_6
ER  - 
%0 Journal Article
%A Denny H. Leung
%A Wee-Kee Tang
%T Extension of functions with small oscillation
%J Fundamenta Mathematicae
%D 2006
%P 183-193
%V 192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm192-2-6/
%R 10.4064/fm192-2-6
%G en
%F 10_4064_fm192_2_6
Denny H. Leung; Wee-Kee Tang. Extension of functions with small oscillation. Fundamenta Mathematicae, Tome 192 (2006) no. 2, pp. 183-193. doi : 10.4064/fm192-2-6. http://geodesic.mathdoc.fr/articles/10.4064/fm192-2-6/

Cité par Sources :