Symplectic groups are $N$-determined 2-compact groups
Fundamenta Mathematicae, Tome 192 (2006) no. 2, pp. 121-139
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that for $n\ge 3$ the symplectic group $Sp(n)$ is as a $2$-compact group determined up to isomorphism by the isomorphism type of its maximal torus normalizer. This allows us to determine the integral homotopy type of $Sp(n)$ among connected finite loop spaces with maximal torus.
Keywords:
symplectic group compact group determined isomorphism isomorphism type its maximal torus normalizer allows determine integral homotopy type among connected finite loop spaces maximal torus
Affiliations des auteurs :
Aleš Vavpetič 1 ; Antonio Viruel 2
@article{10_4064_fm192_2_3,
author = {Ale\v{s} Vavpeti\v{c} and Antonio Viruel},
title = {Symplectic groups are $N$-determined 2-compact groups},
journal = {Fundamenta Mathematicae},
pages = {121--139},
publisher = {mathdoc},
volume = {192},
number = {2},
year = {2006},
doi = {10.4064/fm192-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-2-3/}
}
TY - JOUR AU - Aleš Vavpetič AU - Antonio Viruel TI - Symplectic groups are $N$-determined 2-compact groups JO - Fundamenta Mathematicae PY - 2006 SP - 121 EP - 139 VL - 192 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm192-2-3/ DO - 10.4064/fm192-2-3 LA - en ID - 10_4064_fm192_2_3 ER -
Aleš Vavpetič; Antonio Viruel. Symplectic groups are $N$-determined 2-compact groups. Fundamenta Mathematicae, Tome 192 (2006) no. 2, pp. 121-139. doi: 10.4064/fm192-2-3
Cité par Sources :