Measurable cardinals and fundamental groups
of compact spaces
Fundamenta Mathematicae, Tome 192 (2006) no. 1, pp. 87-92
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that all groups can be realized as fundamental groups of compact spaces if and only if no measurable cardinals exist. If the cardinality of a group $G$ is nonmeasurable then the compact space $K$ such that $G=\pi _1K$ may be chosen so that it is path connected.
Keywords:
prove groups realized fundamental groups compact spaces only measurable cardinals exist cardinality group nonmeasurable compact space may chosen path connected
Affiliations des auteurs :
Adam Prze/xdziecki  1
@article{10_4064_fm192_1_6,
author = {Adam Prze/xdziecki},
title = {Measurable cardinals and fundamental groups
of compact spaces},
journal = {Fundamenta Mathematicae},
pages = {87--92},
year = {2006},
volume = {192},
number = {1},
doi = {10.4064/fm192-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-6/}
}
Adam Prze/xdziecki. Measurable cardinals and fundamental groups of compact spaces. Fundamenta Mathematicae, Tome 192 (2006) no. 1, pp. 87-92. doi: 10.4064/fm192-1-6
Cité par Sources :