Resolving a question of Arkhangel'skiĭ's
Fundamenta Mathematicae, Tome 192 (2006) no. 1, pp. 67-76.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct in ZFC a cosmic space that, despite being the union of countably many metrizable subspaces, has covering dimension equal to 1 and inductive dimensions equal to 2.
DOI : 10.4064/fm192-1-4
Keywords: construct zfc cosmic space despite being union countably many metrizable subspaces has covering dimension equal inductive dimensions equal

Michael G. Charalambous 1

1 Department of Mathematics University of the Aegean 83 200, Karlovassi, Samos, Greece
@article{10_4064_fm192_1_4,
     author = {Michael G. Charalambous},
     title = {Resolving a question of {Arkhangel'ski\u{i}'s}},
     journal = {Fundamenta Mathematicae},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2006},
     doi = {10.4064/fm192-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-4/}
}
TY  - JOUR
AU  - Michael G. Charalambous
TI  - Resolving a question of Arkhangel'skiĭ's
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 67
EP  - 76
VL  - 192
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-4/
DO  - 10.4064/fm192-1-4
LA  - en
ID  - 10_4064_fm192_1_4
ER  - 
%0 Journal Article
%A Michael G. Charalambous
%T Resolving a question of Arkhangel'skiĭ's
%J Fundamenta Mathematicae
%D 2006
%P 67-76
%V 192
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-4/
%R 10.4064/fm192-1-4
%G en
%F 10_4064_fm192_1_4
Michael G. Charalambous. Resolving a question of Arkhangel'skiĭ's. Fundamenta Mathematicae, Tome 192 (2006) no. 1, pp. 67-76. doi : 10.4064/fm192-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-4/

Cité par Sources :