Resolving a question of Arkhangel'skiĭ's
Fundamenta Mathematicae, Tome 192 (2006) no. 1, pp. 67-76
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct in ZFC a cosmic space that, despite being the union of countably many metrizable subspaces, has covering dimension equal to 1 and inductive dimensions equal to 2.
Keywords:
construct zfc cosmic space despite being union countably many metrizable subspaces has covering dimension equal inductive dimensions equal
Affiliations des auteurs :
Michael G. Charalambous 1
@article{10_4064_fm192_1_4,
author = {Michael G. Charalambous},
title = {Resolving a question of {Arkhangel'ski\u{i}'s}},
journal = {Fundamenta Mathematicae},
pages = {67--76},
publisher = {mathdoc},
volume = {192},
number = {1},
year = {2006},
doi = {10.4064/fm192-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-4/}
}
Michael G. Charalambous. Resolving a question of Arkhangel'skiĭ's. Fundamenta Mathematicae, Tome 192 (2006) no. 1, pp. 67-76. doi: 10.4064/fm192-1-4
Cité par Sources :