On second order Thom–Boardman singularities
Fundamenta Mathematicae, Tome 191 (2006) no. 3, pp. 249-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We derive closed formulas for the Thom polynomials of two families of second order Thom–Boardman singularities ${\mit\Sigma} ^{i,j}$. The formulas are given as linear combinations of Schur polynomials, and all coefficients are nonnegative.
DOI : 10.4064/fm191-3-4
Keywords: derive closed formulas thom polynomials families second order thom boardman singularities mit sigma formulas given linear combinations schur polynomials coefficients nonnegative

László M. Fehér 1 ; Balázs Kőműves 2

1 Department of Analysis Eötvös University Budapest, Hungary
2 Department of Mathematics Central European University Budapest, Hungary
@article{10_4064_fm191_3_4,
     author = {L\'aszl\'o M. Feh\'er and Bal\'azs K\H{o}m\'{u}ves},
     title = {On second order {Thom{\textendash}Boardman} singularities},
     journal = {Fundamenta Mathematicae},
     pages = {249--264},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2006},
     doi = {10.4064/fm191-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-4/}
}
TY  - JOUR
AU  - László M. Fehér
AU  - Balázs Kőműves
TI  - On second order Thom–Boardman singularities
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 249
EP  - 264
VL  - 191
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-4/
DO  - 10.4064/fm191-3-4
LA  - en
ID  - 10_4064_fm191_3_4
ER  - 
%0 Journal Article
%A László M. Fehér
%A Balázs Kőműves
%T On second order Thom–Boardman singularities
%J Fundamenta Mathematicae
%D 2006
%P 249-264
%V 191
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-4/
%R 10.4064/fm191-3-4
%G en
%F 10_4064_fm191_3_4
László M. Fehér; Balázs Kőműves. On second order Thom–Boardman singularities. Fundamenta Mathematicae, Tome 191 (2006) no. 3, pp. 249-264. doi : 10.4064/fm191-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-4/

Cité par Sources :