Equimorphism invariants for scattered linear orderings
Fundamenta Mathematicae, Tome 191 (2006) no. 2, pp. 151-173
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Two linear orderings are equimorphic if they can be embedded
in each other. We define invariants for scattered linear orderings
which classify them up to equimorphism.
Essentially, these invariants are finite sequences of finite trees
with ordinal labels.
Also, for each ordinal $\alpha $, we explicitly describe the finite set
of minimal scattered equimorphism types of Hausdorff rank $\alpha $.
We compute the invariants of each of these minimal types..
Keywords:
linear orderings equimorphic embedded each other define invariants scattered linear orderings which classify equimorphism essentially these invariants finite sequences finite trees ordinal labels each ordinal alpha explicitly describe finite set minimal scattered equimorphism types hausdorff rank alpha compute invariants each these minimal types
Affiliations des auteurs :
Antonio Montalbán 1
@article{10_4064_fm191_2_3,
author = {Antonio Montalb\'an},
title = {Equimorphism invariants for scattered linear orderings},
journal = {Fundamenta Mathematicae},
pages = {151--173},
year = {2006},
volume = {191},
number = {2},
doi = {10.4064/fm191-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-3/}
}
Antonio Montalbán. Equimorphism invariants for scattered linear orderings. Fundamenta Mathematicae, Tome 191 (2006) no. 2, pp. 151-173. doi: 10.4064/fm191-2-3
Cité par Sources :