Decompositions of saturated models of stable theories
Fundamenta Mathematicae, Tome 191 (2006) no. 2, pp. 95-124.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize the stable theories $T$ for which the saturated models of $T$ admit decompositions. In particular, we show that countable, shallow, stable theories with NDOP have this property.
DOI : 10.4064/fm191-2-1
Keywords: characterize stable theories which saturated models admit decompositions particular countable shallow stable theories ndop have property

M. C. Laskowski 1 ; S. Shelah 2

1 Department of Mathematics University of Maryland College Park, MD 20742, U.S.A.
2 Institute of Mathematics Hebrew University Jerusalem, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08903, U.S.A.
@article{10_4064_fm191_2_1,
     author = {M. C. Laskowski and S. Shelah},
     title = {Decompositions of saturated models of stable theories},
     journal = {Fundamenta Mathematicae},
     pages = {95--124},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2006},
     doi = {10.4064/fm191-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-1/}
}
TY  - JOUR
AU  - M. C. Laskowski
AU  - S. Shelah
TI  - Decompositions of saturated models of stable theories
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 95
EP  - 124
VL  - 191
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-1/
DO  - 10.4064/fm191-2-1
LA  - en
ID  - 10_4064_fm191_2_1
ER  - 
%0 Journal Article
%A M. C. Laskowski
%A S. Shelah
%T Decompositions of saturated models of stable theories
%J Fundamenta Mathematicae
%D 2006
%P 95-124
%V 191
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-1/
%R 10.4064/fm191-2-1
%G en
%F 10_4064_fm191_2_1
M. C. Laskowski; S. Shelah. Decompositions of saturated models of stable theories. Fundamenta Mathematicae, Tome 191 (2006) no. 2, pp. 95-124. doi : 10.4064/fm191-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-1/

Cité par Sources :