Coordinatewise decomposition, Borel cohomology,
and invariant measures
Fundamenta Mathematicae, Tome 191 (2006) no. 1, pp. 81-94
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given Polish spaces $X$ and $Y$ and a Borel set $S \subseteq X
\times Y$ with countable sections, we describe the circumstances
under which a Borel function $f : S \rightarrow \mathbb R$ is of the form
$f(x,y) = u(x) + v(y)$, where $u : X \rightarrow \mathbb R$ and $v : Y
\rightarrow \mathbb R$ are Borel. This turns out to be a special case of
the problem of determining whether a real-valued Borel cocycle on a
countable Borel equivalence relation is a coboundary. We use several
Glimm–Effros style dichotomies to give a solution to this problem in
terms of certain $\sigma$-finite measures on the underlying space.
The main new technical ingredient is a characterization of the
existence of type III measures of a given cocycle.
Keywords:
given polish spaces and borel set subseteq times countable sections describe circumstances under which borel function rightarrow mathbb form where rightarrow mathbb rightarrow mathbb borel turns out special problem determining whether real valued borel cocycle countable borel equivalence relation coboundary several glimm effros style dichotomies solution problem terms certain sigma finite measures underlying space main technical ingredient characterization existence type iii measures given cocycle
Affiliations des auteurs :
Benjamin D. Miller 1
@article{10_4064_fm191_1_6,
author = {Benjamin D. Miller},
title = {Coordinatewise decomposition, {Borel} cohomology,
and invariant measures},
journal = {Fundamenta Mathematicae},
pages = {81--94},
year = {2006},
volume = {191},
number = {1},
doi = {10.4064/fm191-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-6/}
}
Benjamin D. Miller. Coordinatewise decomposition, Borel cohomology, and invariant measures. Fundamenta Mathematicae, Tome 191 (2006) no. 1, pp. 81-94. doi: 10.4064/fm191-1-6
Cité par Sources :