Coordinatewise decomposition, Borel cohomology, and invariant measures
Fundamenta Mathematicae, Tome 191 (2006) no. 1, pp. 81-94.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given Polish spaces $X$ and $Y$ and a Borel set $S \subseteq X \times Y$ with countable sections, we describe the circumstances under which a Borel function $f : S \rightarrow \mathbb R$ is of the form $f(x,y) = u(x) + v(y)$, where $u : X \rightarrow \mathbb R$ and $v : Y \rightarrow \mathbb R$ are Borel. This turns out to be a special case of the problem of determining whether a real-valued Borel cocycle on a countable Borel equivalence relation is a coboundary. We use several Glimm–Effros style dichotomies to give a solution to this problem in terms of certain $\sigma$-finite measures on the underlying space. The main new technical ingredient is a characterization of the existence of type III measures of a given cocycle.
DOI : 10.4064/fm191-1-6
Keywords: given polish spaces and borel set subseteq times countable sections describe circumstances under which borel function rightarrow mathbb form where rightarrow mathbb rightarrow mathbb borel turns out special problem determining whether real valued borel cocycle countable borel equivalence relation coboundary several glimm effros style dichotomies solution problem terms certain sigma finite measures underlying space main technical ingredient characterization existence type iii measures given cocycle

Benjamin D. Miller 1

1 Department of Mathematics University of California 520 Portola Plaza Los Angeles, CA, 90095-1555, U.S.A.
@article{10_4064_fm191_1_6,
     author = {Benjamin D. Miller},
     title = {Coordinatewise decomposition, {Borel} cohomology,
 and invariant measures},
     journal = {Fundamenta Mathematicae},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {191},
     number = {1},
     year = {2006},
     doi = {10.4064/fm191-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-6/}
}
TY  - JOUR
AU  - Benjamin D. Miller
TI  - Coordinatewise decomposition, Borel cohomology,
 and invariant measures
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 81
EP  - 94
VL  - 191
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-6/
DO  - 10.4064/fm191-1-6
LA  - en
ID  - 10_4064_fm191_1_6
ER  - 
%0 Journal Article
%A Benjamin D. Miller
%T Coordinatewise decomposition, Borel cohomology,
 and invariant measures
%J Fundamenta Mathematicae
%D 2006
%P 81-94
%V 191
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-6/
%R 10.4064/fm191-1-6
%G en
%F 10_4064_fm191_1_6
Benjamin D. Miller. Coordinatewise decomposition, Borel cohomology,
 and invariant measures. Fundamenta Mathematicae, Tome 191 (2006) no. 1, pp. 81-94. doi : 10.4064/fm191-1-6. http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-6/

Cité par Sources :