Continuum many tent map inverse limits with
homeomorphic postcritical $\omega $-limit sets
Fundamenta Mathematicae, Tome 191 (2006) no. 1, pp. 1-21
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We demonstrate that the set of topologically distinct inverse limit spaces of tent maps with a Cantor set for its postcritical $\omega $-limit set has cardinality of the continuum. The set of folding points (i.e. points at which the space is not homeomorphic to the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor set.
Keywords:
demonstrate set topologically distinct inverse limit spaces tent maps cantor set its postcritical omega limit set has cardinality continuum set folding points points which space homeomorphic product zero dimensional set arc each these spaces cantor set
Affiliations des auteurs :
Chris Good 1 ; Brian E. Raines 2
@article{10_4064_fm191_1_1,
author = {Chris Good and Brian E. Raines},
title = {Continuum many tent map inverse limits with
homeomorphic postcritical $\omega $-limit sets},
journal = {Fundamenta Mathematicae},
pages = {1--21},
publisher = {mathdoc},
volume = {191},
number = {1},
year = {2006},
doi = {10.4064/fm191-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-1/}
}
TY - JOUR AU - Chris Good AU - Brian E. Raines TI - Continuum many tent map inverse limits with homeomorphic postcritical $\omega $-limit sets JO - Fundamenta Mathematicae PY - 2006 SP - 1 EP - 21 VL - 191 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-1/ DO - 10.4064/fm191-1-1 LA - en ID - 10_4064_fm191_1_1 ER -
%0 Journal Article %A Chris Good %A Brian E. Raines %T Continuum many tent map inverse limits with homeomorphic postcritical $\omega $-limit sets %J Fundamenta Mathematicae %D 2006 %P 1-21 %V 191 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-1/ %R 10.4064/fm191-1-1 %G en %F 10_4064_fm191_1_1
Chris Good; Brian E. Raines. Continuum many tent map inverse limits with homeomorphic postcritical $\omega $-limit sets. Fundamenta Mathematicae, Tome 191 (2006) no. 1, pp. 1-21. doi: 10.4064/fm191-1-1
Cité par Sources :