Compactifications of $\mathbb{N}$ and Polishable subgroups of $S_{\infty}$
Fundamenta Mathematicae, Tome 189 (2006) no. 3, pp. 269-284.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study homeomorphism groups of metrizable compactifications of $\mathbb{N}$. All of those groups can be represented as almost zero-dimensional Polishable subgroups of the group $S_\infty$. As a corollary, we show that all Polish groups are continuous homomorphic images of almost zero-dimensional Polishable subgroups of $S_\infty$. We prove a sufficient condition for these groups to be one-dimensional and also study their descriptive complexity. In the last section we associate with every Polishable ideal on $\mathbb{N}$ a certain Polishable subgroup of $S_\infty$ which shares its topological dimension and descriptive complexity.
DOI : 10.4064/fm189-3-4
Keywords: study homeomorphism groups metrizable compactifications mathbb those groups represented almost zero dimensional polishable subgroups group infty corollary polish groups continuous homomorphic images almost zero dimensional polishable subgroups infty prove sufficient condition these groups one dimensional study their descriptive complexity section associate every polishable ideal mathbb certain polishable subgroup infty which shares its topological dimension descriptive complexity

Todor Tsankov 1

1 Department of Mathematics 253-37 California Institute of Technology Pasadena, CA 91125, U.S.A.
@article{10_4064_fm189_3_4,
     author = {Todor Tsankov},
     title = {Compactifications of $\mathbb{N}$ 
 and {Polishable} 
subgroups of $S_{\infty}$},
     journal = {Fundamenta Mathematicae},
     pages = {269--284},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2006},
     doi = {10.4064/fm189-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm189-3-4/}
}
TY  - JOUR
AU  - Todor Tsankov
TI  - Compactifications of $\mathbb{N}$ 
 and Polishable 
subgroups of $S_{\infty}$
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 269
EP  - 284
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm189-3-4/
DO  - 10.4064/fm189-3-4
LA  - en
ID  - 10_4064_fm189_3_4
ER  - 
%0 Journal Article
%A Todor Tsankov
%T Compactifications of $\mathbb{N}$ 
 and Polishable 
subgroups of $S_{\infty}$
%J Fundamenta Mathematicae
%D 2006
%P 269-284
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm189-3-4/
%R 10.4064/fm189-3-4
%G en
%F 10_4064_fm189_3_4
Todor Tsankov. Compactifications of $\mathbb{N}$ 
 and Polishable 
subgroups of $S_{\infty}$. Fundamenta Mathematicae, Tome 189 (2006) no. 3, pp. 269-284. doi : 10.4064/fm189-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm189-3-4/

Cité par Sources :