On coarse embeddability into $\ell _p$-spaces and
a conjecture of Dranishnikov
Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 111-116
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that the Hilbert space is coarsely embeddable into any $\ell _p$ for $1\le p\le \infty $. It follows that coarse embeddability into $\ell _2$ and into $\ell _p$ are equivalent for $1\le p 2$.
Keywords:
hilbert space coarsely embeddable ell infty follows coarse embeddability ell ell equivalent
Affiliations des auteurs :
Piotr W. Nowak  1
@article{10_4064_fm189_2_2,
author = {Piotr W. Nowak},
title = {On coarse embeddability into $\ell _p$-spaces and
a conjecture of {Dranishnikov}},
journal = {Fundamenta Mathematicae},
pages = {111--116},
year = {2006},
volume = {189},
number = {2},
doi = {10.4064/fm189-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-2/}
}
TY - JOUR AU - Piotr W. Nowak TI - On coarse embeddability into $\ell _p$-spaces and a conjecture of Dranishnikov JO - Fundamenta Mathematicae PY - 2006 SP - 111 EP - 116 VL - 189 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-2/ DO - 10.4064/fm189-2-2 LA - en ID - 10_4064_fm189_2_2 ER -
Piotr W. Nowak. On coarse embeddability into $\ell _p$-spaces and a conjecture of Dranishnikov. Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 111-116. doi: 10.4064/fm189-2-2
Cité par Sources :