On coarse embeddability into $\ell _p$-spaces and a conjecture of Dranishnikov
Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 111-116.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the Hilbert space is coarsely embeddable into any $\ell _p$ for $1\le p\le \infty $. It follows that coarse embeddability into $\ell _2$ and into $\ell _p$ are equivalent for $1\le p 2$.
DOI : 10.4064/fm189-2-2
Keywords: hilbert space coarsely embeddable ell infty follows coarse embeddability ell ell equivalent

Piotr W. Nowak 1

1 Department of Mathematics Vanderbilt University 1326 Stevenson Center Nashville, TN 37240, U.S.A.
@article{10_4064_fm189_2_2,
     author = {Piotr W. Nowak},
     title = {On coarse embeddability into $\ell _p$-spaces and
 a conjecture of {Dranishnikov}},
     journal = {Fundamenta Mathematicae},
     pages = {111--116},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {2006},
     doi = {10.4064/fm189-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-2/}
}
TY  - JOUR
AU  - Piotr W. Nowak
TI  - On coarse embeddability into $\ell _p$-spaces and
 a conjecture of Dranishnikov
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 111
EP  - 116
VL  - 189
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-2/
DO  - 10.4064/fm189-2-2
LA  - en
ID  - 10_4064_fm189_2_2
ER  - 
%0 Journal Article
%A Piotr W. Nowak
%T On coarse embeddability into $\ell _p$-spaces and
 a conjecture of Dranishnikov
%J Fundamenta Mathematicae
%D 2006
%P 111-116
%V 189
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-2/
%R 10.4064/fm189-2-2
%G en
%F 10_4064_fm189_2_2
Piotr W. Nowak. On coarse embeddability into $\ell _p$-spaces and
 a conjecture of Dranishnikov. Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 111-116. doi : 10.4064/fm189-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-2/

Cité par Sources :