Recurrence of entire transcendental functions
with simple post-singular sets
Fundamenta Mathematicae, Tome 187 (2005) no. 3, pp. 255-289
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study how the orbits of the singularities of the inverse of a meromorphic function determine the dynamics on its Julia set, at least up to a set of (Lebesgue) measure zero. We concentrate on a family of entire transcendental functions with only finitely many singularities of the inverse, counting multiplicity, all of which either escape exponentially fast or are pre-periodic. For these functions we are able to decide whether the function is recurrent or not. In the case that the Julia set is not the entire plane we also obtain estimates for the measure of the Julia set.
Keywords:
study orbits singularities inverse meromorphic function determine dynamics its julia set least set lebesgue measure zero concentrate family entire transcendental functions only finitely many singularities inverse counting multiplicity which either escape exponentially fast pre periodic these functions able decide whether function recurrent the julia set entire plane obtain estimates measure julia set
Affiliations des auteurs :
Jan-Martin Hemke 1
@article{10_4064_fm187_3_4,
author = {Jan-Martin Hemke},
title = {Recurrence of entire transcendental functions
with simple post-singular sets},
journal = {Fundamenta Mathematicae},
pages = {255--289},
publisher = {mathdoc},
volume = {187},
number = {3},
year = {2005},
doi = {10.4064/fm187-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm187-3-4/}
}
TY - JOUR AU - Jan-Martin Hemke TI - Recurrence of entire transcendental functions with simple post-singular sets JO - Fundamenta Mathematicae PY - 2005 SP - 255 EP - 289 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm187-3-4/ DO - 10.4064/fm187-3-4 LA - en ID - 10_4064_fm187_3_4 ER -
Jan-Martin Hemke. Recurrence of entire transcendental functions with simple post-singular sets. Fundamenta Mathematicae, Tome 187 (2005) no. 3, pp. 255-289. doi: 10.4064/fm187-3-4
Cité par Sources :