Generic diffeomorphisms on compact surfaces
Fundamenta Mathematicae, Tome 187 (2005) no. 2, pp. 127-159
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We discuss the remaining obstacles to prove Smale's conjecture about the $C^1$-density of hyperbolicity among surface diffeomorphisms. Using a $C^1$-generic approach, we classify the possible pathologies that may obstruct the $C^1$-density of hyperbolicity. We show that there are essentially two types of obstruction: (i) persistence of infinitely many hyperbolic homoclinic classes and (ii) existence of a single homoclinic class which robustly exhibits homoclinic tangencies. In the course of our discussion, we obtain some related results about $C^1$-generic properties of surface diffeomorphisms involving homoclinic classes, chain-recurrence classes, and hyperbolicity. In particular, it is shown that on a connected surface the $C^1$-generic diffeomorphisms whose non-wandering sets have non-empty interior are the Anosov diffeomorphisms.
Keywords:
discuss remaining obstacles prove smales conjecture about density hyperbolicity among surface diffeomorphisms using generic approach classify possible pathologies may obstruct density hyperbolicity there essentially types obstruction persistence infinitely many hyperbolic homoclinic classes existence single homoclinic class which robustly exhibits homoclinic tangencies course discussion obtain related results about generic properties surface diffeomorphisms involving homoclinic classes chain recurrence classes hyperbolicity particular shown connected surface generic diffeomorphisms whose non wandering sets have non empty interior anosov diffeomorphisms
Affiliations des auteurs :
Flavio Abdenur 1 ; Christian Bonatti 2 ; Sylvain Crovisier 3 ; Lorenzo J. Díaz 4
@article{10_4064_fm187_2_3,
author = {Flavio Abdenur and Christian Bonatti and Sylvain Crovisier and Lorenzo J. D{\'\i}az},
title = {Generic diffeomorphisms on compact surfaces},
journal = {Fundamenta Mathematicae},
pages = {127--159},
publisher = {mathdoc},
volume = {187},
number = {2},
year = {2005},
doi = {10.4064/fm187-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm187-2-3/}
}
TY - JOUR AU - Flavio Abdenur AU - Christian Bonatti AU - Sylvain Crovisier AU - Lorenzo J. Díaz TI - Generic diffeomorphisms on compact surfaces JO - Fundamenta Mathematicae PY - 2005 SP - 127 EP - 159 VL - 187 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm187-2-3/ DO - 10.4064/fm187-2-3 LA - en ID - 10_4064_fm187_2_3 ER -
%0 Journal Article %A Flavio Abdenur %A Christian Bonatti %A Sylvain Crovisier %A Lorenzo J. Díaz %T Generic diffeomorphisms on compact surfaces %J Fundamenta Mathematicae %D 2005 %P 127-159 %V 187 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm187-2-3/ %R 10.4064/fm187-2-3 %G en %F 10_4064_fm187_2_3
Flavio Abdenur; Christian Bonatti; Sylvain Crovisier; Lorenzo J. Díaz. Generic diffeomorphisms on compact surfaces. Fundamenta Mathematicae, Tome 187 (2005) no. 2, pp. 127-159. doi: 10.4064/fm187-2-3
Cité par Sources :