On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane
Fundamenta Mathematicae, Tome 187 (2005) no. 2, pp. 95-110.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove several results concerning the existence of universal covering spaces for separable metric spaces. To begin, we define several homotopy-theoretic conditions which we then prove are equivalent to the existence of a universal covering space. We use these equivalences to prove that every connected, locally path connected separable metric space whose fundamental group is a free group admits a universal covering space. As an application of these results, we prove the main result of this article, which states that a connected, locally path connected subset of the Euclidean plane, ${\mathbb E}^2$, admits a universal covering space if and only if its fundamental group is free, if and only if its fundamental group is countable.
DOI : 10.4064/fm187-2-1
Keywords: prove several results concerning existence universal covering spaces separable metric spaces begin define several homotopy theoretic conditions which prove equivalent existence universal covering space these equivalences prove every connected locally path connected separable metric space whose fundamental group group admits universal covering space application these results prove main result article which states connected locally path connected subset euclidean plane mathbb admits universal covering space only its fundamental group only its fundamental group countable

G. R. Conner 1 ; J. W. Lamoreaux 2

1 Mathematics Department Brigham Young University Provo, UT 84602, U.S.A.
2 Mathematics Department Brigham Young University Provo, UT 84602
@article{10_4064_fm187_2_1,
     author = {G. R. Conner and J. W. Lamoreaux},
     title = {On the existence of universal covering spaces
for metric spaces and subsets of the {Euclidean} plane},
     journal = {Fundamenta Mathematicae},
     pages = {95--110},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {2005},
     doi = {10.4064/fm187-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm187-2-1/}
}
TY  - JOUR
AU  - G. R. Conner
AU  - J. W. Lamoreaux
TI  - On the existence of universal covering spaces
for metric spaces and subsets of the Euclidean plane
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 95
EP  - 110
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm187-2-1/
DO  - 10.4064/fm187-2-1
LA  - en
ID  - 10_4064_fm187_2_1
ER  - 
%0 Journal Article
%A G. R. Conner
%A J. W. Lamoreaux
%T On the existence of universal covering spaces
for metric spaces and subsets of the Euclidean plane
%J Fundamenta Mathematicae
%D 2005
%P 95-110
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm187-2-1/
%R 10.4064/fm187-2-1
%G en
%F 10_4064_fm187_2_1
G. R. Conner; J. W. Lamoreaux. On the existence of universal covering spaces
for metric spaces and subsets of the Euclidean plane. Fundamenta Mathematicae, Tome 187 (2005) no. 2, pp. 95-110. doi : 10.4064/fm187-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm187-2-1/

Cité par Sources :