A fixed-point anomaly in the plane
Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 233-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define an unusual continuum $M$
with the fixed-point property in the plane $\mathbb R^2$. There is a disk $D$ in $\mathbb R^2$ such that $M \cap D$
is an arc and $M \cup D$ does not have the fixed-point property. This example answers
a question of R. H. Bing. The continuum $M$ is a countable union of arcs.
Keywords:
define unusual continuum fixed point property plane mathbb there disk mathbb cap arc cup does have fixed point property example answers question bing continuum countable union arcs
Affiliations des auteurs :
Charles L. Hagopian 1 ; Janusz R. Prajs 2
@article{10_4064_fm186_3_3,
author = {Charles L. Hagopian and Janusz R. Prajs},
title = {A fixed-point anomaly in the plane},
journal = {Fundamenta Mathematicae},
pages = {233--249},
publisher = {mathdoc},
volume = {186},
number = {3},
year = {2005},
doi = {10.4064/fm186-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/}
}
TY - JOUR AU - Charles L. Hagopian AU - Janusz R. Prajs TI - A fixed-point anomaly in the plane JO - Fundamenta Mathematicae PY - 2005 SP - 233 EP - 249 VL - 186 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/ DO - 10.4064/fm186-3-3 LA - en ID - 10_4064_fm186_3_3 ER -
Charles L. Hagopian; Janusz R. Prajs. A fixed-point anomaly in the plane. Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 233-249. doi: 10.4064/fm186-3-3
Cité par Sources :