A fixed-point anomaly in the plane
Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 233-249.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define an unusual continuum $M$ with the fixed-point property in the plane $\mathbb R^2$. There is a disk $D$ in $\mathbb R^2$ such that $M \cap D$ is an arc and $M \cup D$ does not have the fixed-point property. This example answers a question of R. H. Bing. The continuum $M$ is a countable union of arcs.
DOI : 10.4064/fm186-3-3
Keywords: define unusual continuum fixed point property plane mathbb there disk mathbb cap arc cup does have fixed point property example answers question bing continuum countable union arcs

Charles L. Hagopian 1 ; Janusz R. Prajs 2

1 Department of Mathematics California State University, Sacramento Sacramento, CA 95819-6051, U.S.A.
2 Department of Mathematics California State University, Sacramento Sacramento, CA 95819-6051, U.S.A. and Institute of Mathematics and Informatics Opole University Oleska 48, Opole, Poland
@article{10_4064_fm186_3_3,
     author = {Charles L. Hagopian and Janusz R. Prajs},
     title = {A fixed-point anomaly in the plane},
     journal = {Fundamenta Mathematicae},
     pages = {233--249},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {2005},
     doi = {10.4064/fm186-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/}
}
TY  - JOUR
AU  - Charles L. Hagopian
AU  - Janusz R. Prajs
TI  - A fixed-point anomaly in the plane
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 233
EP  - 249
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/
DO  - 10.4064/fm186-3-3
LA  - en
ID  - 10_4064_fm186_3_3
ER  - 
%0 Journal Article
%A Charles L. Hagopian
%A Janusz R. Prajs
%T A fixed-point anomaly in the plane
%J Fundamenta Mathematicae
%D 2005
%P 233-249
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/
%R 10.4064/fm186-3-3
%G en
%F 10_4064_fm186_3_3
Charles L. Hagopian; Janusz R. Prajs. A fixed-point anomaly in the plane. Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 233-249. doi : 10.4064/fm186-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/

Cité par Sources :