1Department of Mathematics California State University, Sacramento Sacramento, CA 95819-6051, U.S.A. 2Department of Mathematics California State University, Sacramento Sacramento, CA 95819-6051, U.S.A. and Institute of Mathematics and Informatics Opole University Oleska 48, Opole, Poland
Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 233-249
We define an unusual continuum $M$
with the fixed-point property in the plane $\mathbb R^2$. There is a disk $D$ in $\mathbb R^2$ such that $M \cap D$
is an arc and $M \cup D$ does not have the fixed-point property. This example answers
a question of R. H. Bing. The continuum $M$ is a countable union of arcs.
Keywords:
define unusual continuum fixed point property plane mathbb there disk mathbb cap arc cup does have fixed point property example answers question bing continuum countable union arcs
Affiliations des auteurs :
Charles L. Hagopian 
1
;
Janusz R. Prajs 
2
1
Department of Mathematics California State University, Sacramento Sacramento, CA 95819-6051, U.S.A.
2
Department of Mathematics California State University, Sacramento Sacramento, CA 95819-6051, U.S.A. and Institute of Mathematics and Informatics Opole University Oleska 48, Opole, Poland
@article{10_4064_fm186_3_3,
author = {Charles L. Hagopian and Janusz R. Prajs},
title = {A fixed-point anomaly in the plane},
journal = {Fundamenta Mathematicae},
pages = {233--249},
year = {2005},
volume = {186},
number = {3},
doi = {10.4064/fm186-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/}
}
TY - JOUR
AU - Charles L. Hagopian
AU - Janusz R. Prajs
TI - A fixed-point anomaly in the plane
JO - Fundamenta Mathematicae
PY - 2005
SP - 233
EP - 249
VL - 186
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/
DO - 10.4064/fm186-3-3
LA - en
ID - 10_4064_fm186_3_3
ER -
%0 Journal Article
%A Charles L. Hagopian
%A Janusz R. Prajs
%T A fixed-point anomaly in the plane
%J Fundamenta Mathematicae
%D 2005
%P 233-249
%V 186
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-3/
%R 10.4064/fm186-3-3
%G en
%F 10_4064_fm186_3_3
Charles L. Hagopian; Janusz R. Prajs. A fixed-point anomaly in the plane. Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 233-249. doi: 10.4064/fm186-3-3