The nonexistence of robust codes for subsets of $\omega _1$
Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 215-231.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Several results are presented concerning the existence or nonexistence, for a subset $S$ of $\omega _1$, of a real $r$ which works as a robust code for $S$ with respect to a given sequence $\langle S_\alpha :\alpha \omega _1\rangle $ of pairwise disjoint stationary subsets of $\omega _1$, where “robustness” of $r$ as a code may either mean that $S\in L[r,\langle S^\ast _\alpha :\alpha \omega _1\rangle ]$ whenever each $S^\ast _\alpha $ is equal to $S_\alpha $ modulo nonstationary changes, or may have the weaker meaning that $S\in L[r, \langle S_\alpha \cap C : \alpha \omega _1\rangle ]$ for every club $C\subseteq \omega _1$. Variants of the above theme are also considered which result when the requirement that $S$ gets exactly coded is replaced by the weaker requirement that some set is coded which is equal to $S$ up to a club, and when sequences of stationary sets are replaced by decoding devices possibly carrying more information (like functions from $\omega _1$ into $\omega _1$).
DOI : 10.4064/fm186-3-2
Keywords: several results presented concerning existence nonexistence subset omega real which works robust code respect given sequence langle alpha alpha omega rangle pairwise disjoint stationary subsets omega where robustness code may either mean langle ast alpha alpha omega rangle whenever each ast alpha equal alpha modulo nonstationary changes may have weaker meaning langle alpha cap alpha omega rangle every club subseteq omega variants above theme considered which result requirement gets exactly coded replaced weaker requirement set coded which equal club sequences stationary sets replaced decoding devices possibly carrying information functions omega omega

David Asperó 1

1 Department of Mathematics University of Bristol University Walk Bristol, BS8 1TW, England, UK
@article{10_4064_fm186_3_2,
     author = {David Asper\'o},
     title = {The nonexistence of robust codes for subsets of $\omega _1$},
     journal = {Fundamenta Mathematicae},
     pages = {215--231},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {2005},
     doi = {10.4064/fm186-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-2/}
}
TY  - JOUR
AU  - David Asperó
TI  - The nonexistence of robust codes for subsets of $\omega _1$
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 215
EP  - 231
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-2/
DO  - 10.4064/fm186-3-2
LA  - en
ID  - 10_4064_fm186_3_2
ER  - 
%0 Journal Article
%A David Asperó
%T The nonexistence of robust codes for subsets of $\omega _1$
%J Fundamenta Mathematicae
%D 2005
%P 215-231
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-2/
%R 10.4064/fm186-3-2
%G en
%F 10_4064_fm186_3_2
David Asperó. The nonexistence of robust codes for subsets of $\omega _1$. Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 215-231. doi : 10.4064/fm186-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-2/

Cité par Sources :