${ Z_2^k}$-actions with a special fixed point set
Fundamenta Mathematicae, Tome 186 (2005) no. 2, pp. 97-109.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $F^n$ be a connected, smooth and closed $n$-dimensional manifold satisfying the following property: if $N^m$ is any smooth and closed $m$-dimensional manifold with $m>n$ and $T:N^m \to N^m$ is a smooth involution whose fixed point set is $F^n$, then $m=2n$. We describe the equivariant cobordism classification of smooth actions $(M^m; {\mit \Phi })$ of the group $G=Z_2^k$ on closed smooth $m$-dimensional manifolds $M^m$ for which the fixed point set of the action is a submanifold $F^n$ with the above property. This generalizes a result of F.~L. Capobianco, who obtained this classification for $F^n={\mathbb R}P^{2r}$ (P. E. Conner and E. E. Floyd had previously shown that ${\mathbb R}P^{2r}$ has the property in question). In addition, we establish some properties concerning these $F^n$ and give some new examples of these special manifolds.
DOI : 10.4064/fm186-2-1
Keywords: connected smooth closed n dimensional manifold satisfying following property smooth closed m dimensional manifold smooth involution whose fixed point set describe equivariant cobordism classification smooth actions mit phi group closed smooth m dimensional manifolds which fixed point set action submanifold above property generalizes result capobianco who obtained classification mathbb conner floyd had previously shown mathbb has property question addition establish properties concerning these examples these special manifolds

Pedro L. Q. Pergher 1 ; Rogério de Oliveira 2

1 Centro de Ciências Exatas e Tecnologia Departamento de Matemática Universidade Federal de São Carlos Caixa Postal 676; CEP 13.565-905 São Carlos, SP, Brazil
2 Departamento de Ciências Exatas Campus Universitário de Três Lagoas Universidade Federal de Mato Grosso do Sul Caixa Postal 210; CEP 79603-011 Três Lagoas, MS, Brazil
@article{10_4064_fm186_2_1,
     author = {Pedro L. Q. Pergher and Rog\'erio de Oliveira},
     title = {${ Z_2^k}$-actions with a special fixed point set},
     journal = {Fundamenta Mathematicae},
     pages = {97--109},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2005},
     doi = {10.4064/fm186-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-1/}
}
TY  - JOUR
AU  - Pedro L. Q. Pergher
AU  - Rogério de Oliveira
TI  - ${ Z_2^k}$-actions with a special fixed point set
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 97
EP  - 109
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-1/
DO  - 10.4064/fm186-2-1
LA  - en
ID  - 10_4064_fm186_2_1
ER  - 
%0 Journal Article
%A Pedro L. Q. Pergher
%A Rogério de Oliveira
%T ${ Z_2^k}$-actions with a special fixed point set
%J Fundamenta Mathematicae
%D 2005
%P 97-109
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-1/
%R 10.4064/fm186-2-1
%G en
%F 10_4064_fm186_2_1
Pedro L. Q. Pergher; Rogério de Oliveira. ${ Z_2^k}$-actions with a special fixed point set. Fundamenta Mathematicae, Tome 186 (2005) no. 2, pp. 97-109. doi : 10.4064/fm186-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-1/

Cité par Sources :