Expanding repellers in limit sets
for iterations of holomorphic functions
Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 85-96
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that for ${\mit \Omega }$ being an immediate basin of attraction to an attracting fixed point for a rational mapping of the Riemann sphere, and for an ergodic invariant measure $\mu $ on the boundary $\mathop {\rm {Fr}}{\mit \Omega }$, with positive Lyapunov exponent, there is an invariant subset of $\mathop {\rm {Fr}}{\mit \Omega }$ which is an expanding repeller of Hausdorff dimension arbitrarily close to the Hausdorff dimension of $\mu $. We also prove generalizations and a geometric coding tree abstract version. The paper is a continuation of a paper in Fund. Math. 145 (1994) by the author and Anna Zdunik, where the density of periodic orbits in $\mathop {\rm {Fr}}{\mit \Omega }$ was proved.
Keywords:
prove mit omega being immediate basin attraction attracting fixed point rational mapping riemann sphere ergodic invariant measure boundary mathop mit omega positive lyapunov exponent there invariant subset mathop mit omega which expanding repeller hausdorff dimension arbitrarily close hausdorff dimension prove generalizations geometric coding tree abstract version paper continuation paper fund math author anna zdunik where density periodic orbits mathop mit omega proved
Affiliations des auteurs :
Feliks Przytycki 1
@article{10_4064_fm186_1_7,
author = {Feliks Przytycki},
title = {Expanding repellers in limit sets
for iterations of holomorphic functions},
journal = {Fundamenta Mathematicae},
pages = {85--96},
year = {2005},
volume = {186},
number = {1},
doi = {10.4064/fm186-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-7/}
}
TY - JOUR AU - Feliks Przytycki TI - Expanding repellers in limit sets for iterations of holomorphic functions JO - Fundamenta Mathematicae PY - 2005 SP - 85 EP - 96 VL - 186 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-7/ DO - 10.4064/fm186-1-7 LA - en ID - 10_4064_fm186_1_7 ER -
Feliks Przytycki. Expanding repellers in limit sets for iterations of holomorphic functions. Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 85-96. doi: 10.4064/fm186-1-7
Cité par Sources :