Expanding repellers in limit sets for iterations of holomorphic functions
Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 85-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for ${\mit \Omega }$ being an immediate basin of attraction to an attracting fixed point for a rational mapping of the Riemann sphere, and for an ergodic invariant measure $\mu $ on the boundary $\mathop {\rm {Fr}}{\mit \Omega }$, with positive Lyapunov exponent, there is an invariant subset of $\mathop {\rm {Fr}}{\mit \Omega }$ which is an expanding repeller of Hausdorff dimension arbitrarily close to the Hausdorff dimension of $\mu $. We also prove generalizations and a geometric coding tree abstract version. The paper is a continuation of a paper in Fund. Math. 145 (1994) by the author and Anna Zdunik, where the density of periodic orbits in $\mathop {\rm {Fr}}{\mit \Omega }$ was proved.
DOI : 10.4064/fm186-1-7
Keywords: prove mit omega being immediate basin attraction attracting fixed point rational mapping riemann sphere ergodic invariant measure boundary mathop mit omega positive lyapunov exponent there invariant subset mathop mit omega which expanding repeller hausdorff dimension arbitrarily close hausdorff dimension prove generalizations geometric coding tree abstract version paper continuation paper fund math author anna zdunik where density periodic orbits mathop mit omega proved

Feliks Przytycki 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland
@article{10_4064_fm186_1_7,
     author = {Feliks Przytycki},
     title = {Expanding repellers in limit sets
 for iterations of holomorphic functions},
     journal = {Fundamenta Mathematicae},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {2005},
     doi = {10.4064/fm186-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-7/}
}
TY  - JOUR
AU  - Feliks Przytycki
TI  - Expanding repellers in limit sets
 for iterations of holomorphic functions
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 85
EP  - 96
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-7/
DO  - 10.4064/fm186-1-7
LA  - en
ID  - 10_4064_fm186_1_7
ER  - 
%0 Journal Article
%A Feliks Przytycki
%T Expanding repellers in limit sets
 for iterations of holomorphic functions
%J Fundamenta Mathematicae
%D 2005
%P 85-96
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-7/
%R 10.4064/fm186-1-7
%G en
%F 10_4064_fm186_1_7
Feliks Przytycki. Expanding repellers in limit sets
 for iterations of holomorphic functions. Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 85-96. doi : 10.4064/fm186-1-7. http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-7/

Cité par Sources :