A countable dense homogeneous set of reals of size $\aleph_1$
Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 71-77.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove there is a countable dense homogeneous subspace of $\Bbb R$ of size~$\aleph_1$. The proof involves an absoluteness argument using an extension of the $L_{\omega_1\omega}(Q)$ logic obtained by adding predicates for Borel sets.
DOI : 10.4064/fm186-1-5
Keywords: prove there countable dense homogeneous subspace bbb size aleph proof involves absoluteness argument using extension omega omega logic obtained adding predicates borel sets

Ilijas Farah 1 ; Michael Hrušák 2 ; Carlos Azarel Martínez Ranero 2

1 Department of Mathematics and Statistics York University 4700 Keele Street Toronto, Canada M3J 1P3 and Matematicki Institut Kneza Mihaila 35 11000 Beograd Serbia and Montenegro
2 Instituto de Matemáticas UNAM Unidad Morelia, A.P. 61-3 Xangari, C.P. 58089 Morelia, Mich., México
@article{10_4064_fm186_1_5,
     author = {Ilijas Farah and Michael Hru\v{s}\'ak and Carlos Azarel Mart{\'\i}nez Ranero},
     title = {A countable dense homogeneous set of reals of size $\aleph_1$},
     journal = {Fundamenta Mathematicae},
     pages = {71--77},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {2005},
     doi = {10.4064/fm186-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-5/}
}
TY  - JOUR
AU  - Ilijas Farah
AU  - Michael Hrušák
AU  - Carlos Azarel Martínez Ranero
TI  - A countable dense homogeneous set of reals of size $\aleph_1$
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 71
EP  - 77
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-5/
DO  - 10.4064/fm186-1-5
LA  - en
ID  - 10_4064_fm186_1_5
ER  - 
%0 Journal Article
%A Ilijas Farah
%A Michael Hrušák
%A Carlos Azarel Martínez Ranero
%T A countable dense homogeneous set of reals of size $\aleph_1$
%J Fundamenta Mathematicae
%D 2005
%P 71-77
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-5/
%R 10.4064/fm186-1-5
%G en
%F 10_4064_fm186_1_5
Ilijas Farah; Michael Hrušák; Carlos Azarel Martínez Ranero. A countable dense homogeneous set of reals of size $\aleph_1$. Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 71-77. doi : 10.4064/fm186-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-5/

Cité par Sources :