A countable dense homogeneous set of reals of size $\aleph_1$
Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 71-77
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove there is a countable dense homogeneous subspace of
$\Bbb R$ of size~$\aleph_1$.
The proof involves an absoluteness argument using an extension of the
$L_{\omega_1\omega}(Q)$ logic obtained
by adding predicates for Borel sets.
Keywords:
prove there countable dense homogeneous subspace bbb size aleph proof involves absoluteness argument using extension omega omega logic obtained adding predicates borel sets
Affiliations des auteurs :
Ilijas Farah 1 ; Michael Hrušák 2 ; Carlos Azarel Martínez Ranero 2
@article{10_4064_fm186_1_5,
author = {Ilijas Farah and Michael Hru\v{s}\'ak and Carlos Azarel Mart{\'\i}nez Ranero},
title = {A countable dense homogeneous set of reals of size $\aleph_1$},
journal = {Fundamenta Mathematicae},
pages = {71--77},
publisher = {mathdoc},
volume = {186},
number = {1},
year = {2005},
doi = {10.4064/fm186-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-5/}
}
TY - JOUR AU - Ilijas Farah AU - Michael Hrušák AU - Carlos Azarel Martínez Ranero TI - A countable dense homogeneous set of reals of size $\aleph_1$ JO - Fundamenta Mathematicae PY - 2005 SP - 71 EP - 77 VL - 186 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-5/ DO - 10.4064/fm186-1-5 LA - en ID - 10_4064_fm186_1_5 ER -
%0 Journal Article %A Ilijas Farah %A Michael Hrušák %A Carlos Azarel Martínez Ranero %T A countable dense homogeneous set of reals of size $\aleph_1$ %J Fundamenta Mathematicae %D 2005 %P 71-77 %V 186 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-5/ %R 10.4064/fm186-1-5 %G en %F 10_4064_fm186_1_5
Ilijas Farah; Michael Hrušák; Carlos Azarel Martínez Ranero. A countable dense homogeneous set of reals of size $\aleph_1$. Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 71-77. doi: 10.4064/fm186-1-5
Cité par Sources :