$\alpha $-Properness and Axiom A
Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 25-37
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that under ZFC,
for every indecomposable
ordinal $\alpha\omega_1$,
there exists a poset which is $\beta$-proper for every $\beta\alpha$
but not $\alpha$-proper.
It is also shown that a poset is forcing equivalent to
a poset satisfying Axiom A if and only if
it is $\alpha$-proper for every $\alpha\omega_1$.
Keywords:
under zfc every indecomposable ordinal alpha omega there exists poset which beta proper every beta alpha alpha proper shown poset forcing equivalent poset satisfying axiom only alpha proper every alpha omega
Affiliations des auteurs :
Tetsuya Ishiu 1
@article{10_4064_fm186_1_2,
author = {Tetsuya Ishiu},
title = {$\alpha ${-Properness} and {Axiom} {A}},
journal = {Fundamenta Mathematicae},
pages = {25--37},
publisher = {mathdoc},
volume = {186},
number = {1},
year = {2005},
doi = {10.4064/fm186-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-2/}
}
Tetsuya Ishiu. $\alpha $-Properness and Axiom A. Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 25-37. doi: 10.4064/fm186-1-2
Cité par Sources :