Anosov theorem for coincidences on nilmanifolds
Fundamenta Mathematicae, Tome 185 (2005) no. 3, pp. 247-259.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Suppose that $L,L'$ are simply connected nilpotent Lie groups such that the groups $\gamma_i(L)$ and $\gamma_i(L')$ in their lower central series have the same dimension. We show that the Nielsen and Lefschetz coincidence numbers of maps $f,g : {\mit\Gamma}\backslash L\to {\mit\Gamma}'\backslash L'$ between nilmanifolds ${\mit\Gamma}\backslash L$ and ${\mit\Gamma}'\backslash L'$ can be computed algebraically as follows: $$ L(f,g)=\det(G_*-F_*),\quad N(f,g)=\vert L(f,g)\vert, $$ where $F_*, G_*$ are the matrices, with respect to any preferred bases on the uniform lattices ${\mit\Gamma}$ and ${\mit\Gamma}'$, of the homomorphisms between the Lie algebras $\mathfrak{L}, \mathfrak{L}'$ of $L, L'$ induced by $f,g$.
DOI : 10.4064/fm185-3-3
Keywords: suppose simply connected nilpotent lie groups groups gamma gamma their lower central series have dimension nielsen lefschetz coincidence numbers maps mit gamma backslash mit gamma backslash between nilmanifolds mit gamma backslash mit gamma backslash computed algebraically follows det * f * quad vert vert where * * matrices respect preferred bases uniform lattices mit gamma mit gamma homomorphisms between lie algebras mathfrak mathfrak induced

Seung Won Kim 1 ; Jong Bum Lee 1

1 Department of Mathematics Sogang University Seoul 121-742, Korea
@article{10_4064_fm185_3_3,
     author = {Seung Won Kim and Jong Bum Lee},
     title = {Anosov theorem for coincidences on nilmanifolds},
     journal = {Fundamenta Mathematicae},
     pages = {247--259},
     publisher = {mathdoc},
     volume = {185},
     number = {3},
     year = {2005},
     doi = {10.4064/fm185-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-3/}
}
TY  - JOUR
AU  - Seung Won Kim
AU  - Jong Bum Lee
TI  - Anosov theorem for coincidences on nilmanifolds
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 247
EP  - 259
VL  - 185
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-3/
DO  - 10.4064/fm185-3-3
LA  - en
ID  - 10_4064_fm185_3_3
ER  - 
%0 Journal Article
%A Seung Won Kim
%A Jong Bum Lee
%T Anosov theorem for coincidences on nilmanifolds
%J Fundamenta Mathematicae
%D 2005
%P 247-259
%V 185
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-3/
%R 10.4064/fm185-3-3
%G en
%F 10_4064_fm185_3_3
Seung Won Kim; Jong Bum Lee. Anosov theorem for coincidences on nilmanifolds. Fundamenta Mathematicae, Tome 185 (2005) no. 3, pp. 247-259. doi : 10.4064/fm185-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-3/

Cité par Sources :