Anosov theorem for coincidences on nilmanifolds
Fundamenta Mathematicae, Tome 185 (2005) no. 3, pp. 247-259
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose that $L,L'$ are simply connected nilpotent Lie
groups such that the groups $\gamma_i(L)$ and $\gamma_i(L')$ in
their lower central series have the same dimension.
We show that the Nielsen and Lefschetz coincidence numbers of maps
$f,g : {\mit\Gamma}\backslash L\to {\mit\Gamma}'\backslash L'$ between nilmanifolds
${\mit\Gamma}\backslash L$ and ${\mit\Gamma}'\backslash L'$ can be computed algebraically as
follows:
$$
L(f,g)=\det(G_*-F_*),\quad N(f,g)=\vert L(f,g)\vert,
$$
where $F_*, G_*$ are the matrices, with respect to any preferred
bases on the uniform lattices ${\mit\Gamma}$ and ${\mit\Gamma}'$, of the
homomorphisms between the Lie algebras $\mathfrak{L}, \mathfrak{L}'$
of $L, L'$ induced by $f,g$.
Keywords:
suppose simply connected nilpotent lie groups groups gamma gamma their lower central series have dimension nielsen lefschetz coincidence numbers maps mit gamma backslash mit gamma backslash between nilmanifolds mit gamma backslash mit gamma backslash computed algebraically follows det * f * quad vert vert where * * matrices respect preferred bases uniform lattices mit gamma mit gamma homomorphisms between lie algebras mathfrak mathfrak induced
Affiliations des auteurs :
Seung Won Kim 1 ; Jong Bum Lee 1
@article{10_4064_fm185_3_3,
author = {Seung Won Kim and Jong Bum Lee},
title = {Anosov theorem for coincidences on nilmanifolds},
journal = {Fundamenta Mathematicae},
pages = {247--259},
publisher = {mathdoc},
volume = {185},
number = {3},
year = {2005},
doi = {10.4064/fm185-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-3/}
}
TY - JOUR AU - Seung Won Kim AU - Jong Bum Lee TI - Anosov theorem for coincidences on nilmanifolds JO - Fundamenta Mathematicae PY - 2005 SP - 247 EP - 259 VL - 185 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-3/ DO - 10.4064/fm185-3-3 LA - en ID - 10_4064_fm185_3_3 ER -
Seung Won Kim; Jong Bum Lee. Anosov theorem for coincidences on nilmanifolds. Fundamenta Mathematicae, Tome 185 (2005) no. 3, pp. 247-259. doi: 10.4064/fm185-3-3
Cité par Sources :