Hereditarily indecomposable inverse limits of graphs
Fundamenta Mathematicae, Tome 185 (2005) no. 3, pp. 195-210.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the following theorem: Let $G$ be a compact connected graph and let $f:G\rightarrow G$ be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum $A$ of $G$, there is a positive integer $n$ such that $f^n (A) = G.$ Then, for each $\varepsilon >0$, there is a map ${f_\varepsilon}:G \rightarrow G$ which is $\varepsilon$-close to $f$ such that the inverse limit $(G, f_\varepsilon)$ is hereditarily indecomposable.
DOI : 10.4064/fm185-3-1
Keywords: prove following theorem compact connected graph rightarrow piecewise linear surjection which satisfies following condition each nondegenerate subcontinuum there positive integer each varepsilon there map varepsilon rightarrow which varepsilon close inverse limit varepsilon hereditarily indecomposable

K. Kawamura 1 ; H. M. Tuncali 2 ; E. D. Tymchatyn 3

1 Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305-8571, Japan
2 Faculty of Arts and Science Nipissing University 100 College Drive, Box 5002 North Bay, Ontario Canada P1B 8L7
3 Department of Mathematics and Statistics University of Saskatchewan 106 Wiggins Road Saskatoon, Saskatchewan Canada S7N 5E6
@article{10_4064_fm185_3_1,
     author = {K. Kawamura and H. M. Tuncali and E. D. Tymchatyn},
     title = {Hereditarily indecomposable inverse limits of graphs},
     journal = {Fundamenta Mathematicae},
     pages = {195--210},
     publisher = {mathdoc},
     volume = {185},
     number = {3},
     year = {2005},
     doi = {10.4064/fm185-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-1/}
}
TY  - JOUR
AU  - K. Kawamura
AU  - H. M. Tuncali
AU  - E. D. Tymchatyn
TI  - Hereditarily indecomposable inverse limits of graphs
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 195
EP  - 210
VL  - 185
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-1/
DO  - 10.4064/fm185-3-1
LA  - en
ID  - 10_4064_fm185_3_1
ER  - 
%0 Journal Article
%A K. Kawamura
%A H. M. Tuncali
%A E. D. Tymchatyn
%T Hereditarily indecomposable inverse limits of graphs
%J Fundamenta Mathematicae
%D 2005
%P 195-210
%V 185
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-1/
%R 10.4064/fm185-3-1
%G en
%F 10_4064_fm185_3_1
K. Kawamura; H. M. Tuncali; E. D. Tymchatyn. Hereditarily indecomposable inverse limits of graphs. Fundamenta Mathematicae, Tome 185 (2005) no. 3, pp. 195-210. doi : 10.4064/fm185-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-1/

Cité par Sources :