Menger curvature and Lipschitz parametrizations in metric spaces
Fundamenta Mathematicae, Tome 185 (2005) no. 2, pp. 143-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that pointwise bounds on the Menger curvature imply Lipschitz parametrization for general compact metric spaces. We also give some estimates on the optimal Lipschitz constants of the parametrizing maps for the metric spaces in $\Omega(\varepsilon)$, the class of bounded metric spaces $E$ such that the maximum angle for every triple in $E$ is at least $\pi/2 + \arcsin\varepsilon$. Finally, we extend Peter Jones's travelling salesman theorem to general metric spaces.
DOI : 10.4064/fm185-2-3
Keywords: pointwise bounds menger curvature imply lipschitz parametrization general compact metric spaces estimates optimal lipschitz constants parametrizing maps metric spaces omega varepsilon class bounded metric spaces maximum angle every triple least arcsin varepsilon finally extend peter joness travelling salesman theorem general metric spaces

Immo Hahlomaa 1

1 Department of Mathematics and Statistics University of Jyväskylä P.O. Box 35 FIN-40014 Jyväskylä, Finland
@article{10_4064_fm185_2_3,
     author = {Immo Hahlomaa},
     title = {Menger curvature and {Lipschitz} parametrizations in metric spaces},
     journal = {Fundamenta Mathematicae},
     pages = {143--169},
     publisher = {mathdoc},
     volume = {185},
     number = {2},
     year = {2005},
     doi = {10.4064/fm185-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-2-3/}
}
TY  - JOUR
AU  - Immo Hahlomaa
TI  - Menger curvature and Lipschitz parametrizations in metric spaces
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 143
EP  - 169
VL  - 185
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm185-2-3/
DO  - 10.4064/fm185-2-3
LA  - en
ID  - 10_4064_fm185_2_3
ER  - 
%0 Journal Article
%A Immo Hahlomaa
%T Menger curvature and Lipschitz parametrizations in metric spaces
%J Fundamenta Mathematicae
%D 2005
%P 143-169
%V 185
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm185-2-3/
%R 10.4064/fm185-2-3
%G en
%F 10_4064_fm185_2_3
Immo Hahlomaa. Menger curvature and Lipschitz parametrizations in metric spaces. Fundamenta Mathematicae, Tome 185 (2005) no. 2, pp. 143-169. doi : 10.4064/fm185-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm185-2-3/

Cité par Sources :