Classification of homotopy classes
of equivariant gradient maps
Fundamenta Mathematicae, Tome 185 (2005) no. 1, pp. 1-18
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $V$ be an orthogonal representation of a compact Lie
group $G$ and let $S(V),D(V)$ be the unit sphere and disc of
$V,$ respectively. If $F : V \rightarrow \mathbb R$ is a $G$-invariant
$C^1$-map then the $G$-equivariant gradient $C^0$-map $\nabla F
: V \rightarrow V$ is said to be admissible provided that
$(\nabla F)^{-1}(0) \cap S(V) =
\emptyset.$ We classify the homotopy classes of admissible
$G$-equivariant gradient maps $\nabla F : (D(V),S(V))
\rightarrow (V, V\setminus \{0\})$.
Mots-clés :
orthogonal representation compact lie group unit sphere disc respectively rightarrow mathbb g invariant map g equivariant gradient map nabla rightarrow said admissible provided nabla cap emptyset classify homotopy classes admissible g equivariant gradient maps nabla rightarrow setminus
Affiliations des auteurs :
E. N. Dancer 1 ; K. G/eba 2 ; S. M. Rybicki 3
@article{10_4064_fm185_1_1,
author = {E. N. Dancer and K. G/eba and S. M. Rybicki},
title = {Classification of homotopy classes
of equivariant gradient maps},
journal = {Fundamenta Mathematicae},
pages = {1--18},
publisher = {mathdoc},
volume = {185},
number = {1},
year = {2005},
doi = {10.4064/fm185-1-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-1/}
}
TY - JOUR AU - E. N. Dancer AU - K. G/eba AU - S. M. Rybicki TI - Classification of homotopy classes of equivariant gradient maps JO - Fundamenta Mathematicae PY - 2005 SP - 1 EP - 18 VL - 185 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-1/ DO - 10.4064/fm185-1-1 LA - fr ID - 10_4064_fm185_1_1 ER -
%0 Journal Article %A E. N. Dancer %A K. G/eba %A S. M. Rybicki %T Classification of homotopy classes of equivariant gradient maps %J Fundamenta Mathematicae %D 2005 %P 1-18 %V 185 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-1/ %R 10.4064/fm185-1-1 %G fr %F 10_4064_fm185_1_1
E. N. Dancer; K. G/eba; S. M. Rybicki. Classification of homotopy classes of equivariant gradient maps. Fundamenta Mathematicae, Tome 185 (2005) no. 1, pp. 1-18. doi: 10.4064/fm185-1-1
Cité par Sources :