Classification of homotopy classes of equivariant gradient maps
Fundamenta Mathematicae, Tome 185 (2005) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $V$ be an orthogonal representation of a compact Lie group $G$ and let $S(V),D(V)$ be the unit sphere and disc of $V,$ respectively. If $F : V \rightarrow \mathbb R$ is a $G$-invariant $C^1$-map then the $G$-equivariant gradient $C^0$-map $\nabla F : V \rightarrow V$ is said to be admissible provided that $(\nabla F)^{-1}(0) \cap S(V) = \emptyset.$ We classify the homotopy classes of admissible $G$-equivariant gradient maps $\nabla F : (D(V),S(V)) \rightarrow (V, V\setminus \{0\})$.
DOI : 10.4064/fm185-1-1
Mots-clés : orthogonal representation compact lie group unit sphere disc respectively rightarrow mathbb g invariant map g equivariant gradient map nabla rightarrow said admissible provided nabla cap emptyset classify homotopy classes admissible g equivariant gradient maps nabla rightarrow setminus

E. N. Dancer 1 ; K. G/eba 2 ; S. M. Rybicki 3

1 School of Mathematics Sydney University Sydney, NSW 2006 Australia
2 Faculty of Technical Physics and Applied Mathematics Technical University of Gdańsk Narutowicza 11-12 PL-80-952 Gdańsk, Poland
3 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12-18 PL-87-100 Toruń, Poland
@article{10_4064_fm185_1_1,
     author = {E. N. Dancer and K. G/eba and S. M. Rybicki},
     title = {Classification of homotopy classes
of  equivariant gradient maps},
     journal = {Fundamenta Mathematicae},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2005},
     doi = {10.4064/fm185-1-1},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-1/}
}
TY  - JOUR
AU  - E. N. Dancer
AU  - K. G/eba
AU  - S. M. Rybicki
TI  - Classification of homotopy classes
of  equivariant gradient maps
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 1
EP  - 18
VL  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-1/
DO  - 10.4064/fm185-1-1
LA  - fr
ID  - 10_4064_fm185_1_1
ER  - 
%0 Journal Article
%A E. N. Dancer
%A K. G/eba
%A S. M. Rybicki
%T Classification of homotopy classes
of  equivariant gradient maps
%J Fundamenta Mathematicae
%D 2005
%P 1-18
%V 185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-1/
%R 10.4064/fm185-1-1
%G fr
%F 10_4064_fm185_1_1
E. N. Dancer; K. G/eba; S. M. Rybicki. Classification of homotopy classes
of  equivariant gradient maps. Fundamenta Mathematicae, Tome 185 (2005) no. 1, pp. 1-18. doi : 10.4064/fm185-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-1/

Cité par Sources :