On the classes of Lipschitz and smooth
conjugacies of unimodal maps
Fundamenta Mathematicae, Tome 183 (2004) no. 3, pp. 215-227
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Under very mild assumptions, any Lipschitz continuous conjugacy between the closures of the postcritical sets of two $C^1$-unimodal maps has a derivative at the critical point, and also on a dense set of its preimages. In a more restrictive situation of infinitely renormalizable maps of bounded combinatorial type the Lipschitz condition automatically implies the $C^1$-smoothness of the conjugacy. Here the critical degree can be any real number $\alpha >1$.
Keywords:
under mild assumptions lipschitz continuous conjugacy between closures postcritical sets unimodal maps has derivative critical point dense set its preimages restrictive situation infinitely renormalizable maps bounded combinatorial type lipschitz condition automatically implies smoothness conjugacy here critical degree real number alpha
Affiliations des auteurs :
Waldemar Pa/luba 1
@article{10_4064_fm183_3_2,
author = {Waldemar Pa/luba},
title = {On the classes of {Lipschitz} and smooth
conjugacies of unimodal maps},
journal = {Fundamenta Mathematicae},
pages = {215--227},
publisher = {mathdoc},
volume = {183},
number = {3},
year = {2004},
doi = {10.4064/fm183-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm183-3-2/}
}
TY - JOUR AU - Waldemar Pa/luba TI - On the classes of Lipschitz and smooth conjugacies of unimodal maps JO - Fundamenta Mathematicae PY - 2004 SP - 215 EP - 227 VL - 183 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm183-3-2/ DO - 10.4064/fm183-3-2 LA - en ID - 10_4064_fm183_3_2 ER -
Waldemar Pa/luba. On the classes of Lipschitz and smooth conjugacies of unimodal maps. Fundamenta Mathematicae, Tome 183 (2004) no. 3, pp. 215-227. doi: 10.4064/fm183-3-2
Cité par Sources :