Reidemeister orbit sets
Fundamenta Mathematicae, Tome 183 (2004) no. 2, pp. 139-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. Extending Ferrario's work on Reidemeister sets, we obtain algebraic results such as addition formulae for Reidemeister orbit sets. Similar formulae for Nielsen type essential orbit numbers are also proved for fibre preserving maps.
DOI : 10.4064/fm183-2-5
Mots-clés : reidemeister orbit set plays crucial role nielsen type theory periodic orbits much reidemeister set does nielsen fixed point theory extending ferrarios work reidemeister sets obtain algebraic results addition formulae reidemeister orbit sets similar formulae nielsen type essential orbit numbers proved fibre preserving maps

Boju Jiang 1 ; Seoung Ho Lee 2 ; Moo Ha Woo 3

1 Peking University Beijing 100871, China
2 Mokwon University Daejeon 302-729, Korea
3 Korea University Seoul 136-701, Korea
@article{10_4064_fm183_2_5,
     author = {Boju Jiang and Seoung Ho Lee and Moo Ha Woo},
     title = {Reidemeister orbit sets},
     journal = {Fundamenta Mathematicae},
     pages = {139--156},
     publisher = {mathdoc},
     volume = {183},
     number = {2},
     year = {2004},
     doi = {10.4064/fm183-2-5},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-5/}
}
TY  - JOUR
AU  - Boju Jiang
AU  - Seoung Ho Lee
AU  - Moo Ha Woo
TI  - Reidemeister orbit sets
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 139
EP  - 156
VL  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-5/
DO  - 10.4064/fm183-2-5
LA  - de
ID  - 10_4064_fm183_2_5
ER  - 
%0 Journal Article
%A Boju Jiang
%A Seoung Ho Lee
%A Moo Ha Woo
%T Reidemeister orbit sets
%J Fundamenta Mathematicae
%D 2004
%P 139-156
%V 183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-5/
%R 10.4064/fm183-2-5
%G de
%F 10_4064_fm183_2_5
Boju Jiang; Seoung Ho Lee; Moo Ha Woo. Reidemeister orbit sets. Fundamenta Mathematicae, Tome 183 (2004) no. 2, pp. 139-156. doi : 10.4064/fm183-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-5/

Cité par Sources :