Products of Baire spaces revisited
Fundamenta Mathematicae, Tome 183 (2004) no. 2, pp. 115-121
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Generalizing a theorem of Oxtoby, it is shown that an arbitrary product of Baire spaces which are almost locally universally Kuratowski–Ulam (in particular, have countable-in-itself $\pi $-bases) is a Baire space. Also, partially answering a question of Fleissner, it is proved that a countable box product of almost locally universally Kuratowski–Ulam Baire spaces is a Baire space.
Keywords:
generalizing theorem oxtoby shown arbitrary product baire spaces which almost locally universally kuratowski ulam particular have countable in itself bases baire space partially answering question fleissner proved countable box product almost locally universally kuratowski ulam baire spaces baire space
Affiliations des auteurs :
László Zsilinszky 1
@article{10_4064_fm183_2_3,
author = {L\'aszl\'o Zsilinszky},
title = {Products of {Baire} spaces revisited},
journal = {Fundamenta Mathematicae},
pages = {115--121},
publisher = {mathdoc},
volume = {183},
number = {2},
year = {2004},
doi = {10.4064/fm183-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-3/}
}
László Zsilinszky. Products of Baire spaces revisited. Fundamenta Mathematicae, Tome 183 (2004) no. 2, pp. 115-121. doi: 10.4064/fm183-2-3
Cité par Sources :