Products of Baire spaces revisited
Fundamenta Mathematicae, Tome 183 (2004) no. 2, pp. 115-121.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Generalizing a theorem of Oxtoby, it is shown that an arbitrary product of Baire spaces which are almost locally universally Kuratowski–Ulam (in particular, have countable-in-itself $\pi $-bases) is a Baire space. Also, partially answering a question of Fleissner, it is proved that a countable box product of almost locally universally Kuratowski–Ulam Baire spaces is a Baire space.
DOI : 10.4064/fm183-2-3
Keywords: generalizing theorem oxtoby shown arbitrary product baire spaces which almost locally universally kuratowski ulam particular have countable in itself bases baire space partially answering question fleissner proved countable box product almost locally universally kuratowski ulam baire spaces baire space

László Zsilinszky 1

1 Department of Mathematics and Computer Science University of North Carolina at Pembroke Pembroke, NC 28372, U.S.A.
@article{10_4064_fm183_2_3,
     author = {L\'aszl\'o Zsilinszky},
     title = {Products of {Baire} spaces revisited},
     journal = {Fundamenta Mathematicae},
     pages = {115--121},
     publisher = {mathdoc},
     volume = {183},
     number = {2},
     year = {2004},
     doi = {10.4064/fm183-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-3/}
}
TY  - JOUR
AU  - László Zsilinszky
TI  - Products of Baire spaces revisited
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 115
EP  - 121
VL  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-3/
DO  - 10.4064/fm183-2-3
LA  - en
ID  - 10_4064_fm183_2_3
ER  - 
%0 Journal Article
%A László Zsilinszky
%T Products of Baire spaces revisited
%J Fundamenta Mathematicae
%D 2004
%P 115-121
%V 183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-3/
%R 10.4064/fm183-2-3
%G en
%F 10_4064_fm183_2_3
László Zsilinszky. Products of Baire spaces revisited. Fundamenta Mathematicae, Tome 183 (2004) no. 2, pp. 115-121. doi : 10.4064/fm183-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-3/

Cité par Sources :