On a formula for the
asymptotic dimension of free products
Fundamenta Mathematicae, Tome 183 (2004) no. 1, pp. 39-45
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove an exact formula for the asymptotic dimension (asdim) of a free product. Our main theorem states that if $A$ and $B$ are finitely generated groups with $\mathop
{\rm asdim}\nolimits A=n$ and $\mathop {\rm asdim}\nolimits B\le n$, then
${\rm asdim} (A\ast B)=\mathop {\rm max} \{n,1\}.$
Keywords:
prove exact formula asymptotic dimension asdim product main theorem states finitely generated groups mathop asdim nolimits mathop asdim nolimits asdim ast mathop max
Affiliations des auteurs :
G. C. Bell 1 ; A. N. Dranishnikov 2 ; J. E. Keesling 3
@article{10_4064_fm183_1_2,
author = {G. C. Bell and A. N. Dranishnikov and J. E. Keesling},
title = {On a formula for the
asymptotic dimension of free products},
journal = {Fundamenta Mathematicae},
pages = {39--45},
publisher = {mathdoc},
volume = {183},
number = {1},
year = {2004},
doi = {10.4064/fm183-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-2/}
}
TY - JOUR AU - G. C. Bell AU - A. N. Dranishnikov AU - J. E. Keesling TI - On a formula for the asymptotic dimension of free products JO - Fundamenta Mathematicae PY - 2004 SP - 39 EP - 45 VL - 183 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-2/ DO - 10.4064/fm183-1-2 LA - en ID - 10_4064_fm183_1_2 ER -
%0 Journal Article %A G. C. Bell %A A. N. Dranishnikov %A J. E. Keesling %T On a formula for the asymptotic dimension of free products %J Fundamenta Mathematicae %D 2004 %P 39-45 %V 183 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-2/ %R 10.4064/fm183-1-2 %G en %F 10_4064_fm183_1_2
G. C. Bell; A. N. Dranishnikov; J. E. Keesling. On a formula for the asymptotic dimension of free products. Fundamenta Mathematicae, Tome 183 (2004) no. 1, pp. 39-45. doi: 10.4064/fm183-1-2
Cité par Sources :