Fixed points on torus fiber bundles over the circle
Fundamenta Mathematicae, Tome 183 (2004) no. 1, pp. 1-38
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The main purpose of this work is to study fixed points of
fiber-preserving maps over the circle $S^1$ for spaces which are
fibrations over $S^1$ and the fiber is the torus ,$T$. For the case
where the fiber is a surface with nonpositive Euler
characteristic, we establish general algebraic conditions, in
terms of the fundamental group and the induced homomorphism, for the existence of a
deformation of a map over $S^1$ to a fixed point free map. For the case
where the fiber is a torus, we classify all maps over $S^1$ which
can be deformed fiberwise to a fixed point free map.
Keywords:
main purpose work study fixed points fiber preserving maps circle spaces which fibrations fiber torus nbsp where fiber surface nonpositive euler characteristic establish general algebraic conditions terms fundamental group induced homomorphism existence deformation map fixed point map where fiber torus classify maps which deformed fiberwise fixed point map
Affiliations des auteurs :
D. L. Gonçalves 1 ; D. Penteado 2 ; J. P. Vieira 3
@article{10_4064_fm183_1_1,
author = {D. L. Gon\c{c}alves and D. Penteado and J. P. Vieira},
title = {Fixed points on torus fiber bundles over the circle},
journal = {Fundamenta Mathematicae},
pages = {1--38},
year = {2004},
volume = {183},
number = {1},
doi = {10.4064/fm183-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-1/}
}
TY - JOUR AU - D. L. Gonçalves AU - D. Penteado AU - J. P. Vieira TI - Fixed points on torus fiber bundles over the circle JO - Fundamenta Mathematicae PY - 2004 SP - 1 EP - 38 VL - 183 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-1/ DO - 10.4064/fm183-1-1 LA - en ID - 10_4064_fm183_1_1 ER -
D. L. Gonçalves; D. Penteado; J. P. Vieira. Fixed points on torus fiber bundles over the circle. Fundamenta Mathematicae, Tome 183 (2004) no. 1, pp. 1-38. doi: 10.4064/fm183-1-1
Cité par Sources :