The return sequence of the Bowen–Series map
for punctured surfaces
Fundamenta Mathematicae, Tome 182 (2004) no. 3, pp. 221-240
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a non-compact hyperbolic surface $M$ of
finite area, we study a certain Poincaré section for the
geodesic flow. The canonical, non-invertible factor of the
first return map to this section is shown to be pointwise dual
ergodic with return sequence $(a_n)$ given by
$$
a_n = \frac{\pi}{ 4 (\hbox{Area}(M) + 2 \pi)}\cdot \frac{n}{\log n }.
$$
We use this result to deduce that the section map itself is
rationally ergodic, and that the geodesic flow associated to $M$
is ergodic with respect to the Liouville measure.
Keywords:
non compact hyperbolic surface finite area study certain poincar section geodesic flow canonical non invertible factor first return map section shown pointwise dual ergodic return sequence given frac hbox area cdot frac log result deduce section map itself rationally ergodic geodesic flow associated ergodic respect liouville measure
Affiliations des auteurs :
Manuel Stadlbauer  1
@article{10_4064_fm182_3_3,
author = {Manuel Stadlbauer},
title = {The return sequence of the {Bowen{\textendash}Series} map
for punctured surfaces},
journal = {Fundamenta Mathematicae},
pages = {221--240},
year = {2004},
volume = {182},
number = {3},
doi = {10.4064/fm182-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-3-3/}
}
Manuel Stadlbauer. The return sequence of the Bowen–Series map for punctured surfaces. Fundamenta Mathematicae, Tome 182 (2004) no. 3, pp. 221-240. doi: 10.4064/fm182-3-3
Cité par Sources :