The return sequence of the Bowen–Series map
for punctured surfaces
Fundamenta Mathematicae, Tome 182 (2004) no. 3, pp. 221-240
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a non-compact hyperbolic surface $M$ of
finite area, we study a certain Poincaré section for the
geodesic flow. The canonical, non-invertible factor of the
first return map to this section is shown to be pointwise dual
ergodic with return sequence $(a_n)$ given by
$$
a_n = \frac{\pi}{ 4 (\hbox{Area}(M) + 2 \pi)}\cdot \frac{n}{\log n }.
$$
We use this result to deduce that the section map itself is
rationally ergodic, and that the geodesic flow associated to $M$
is ergodic with respect to the Liouville measure.
Keywords:
non compact hyperbolic surface finite area study certain poincar section geodesic flow canonical non invertible factor first return map section shown pointwise dual ergodic return sequence given frac hbox area cdot frac log result deduce section map itself rationally ergodic geodesic flow associated ergodic respect liouville measure
Affiliations des auteurs :
Manuel Stadlbauer 1
@article{10_4064_fm182_3_3,
author = {Manuel Stadlbauer},
title = {The return sequence of the {Bowen{\textendash}Series} map
for punctured surfaces},
journal = {Fundamenta Mathematicae},
pages = {221--240},
publisher = {mathdoc},
volume = {182},
number = {3},
year = {2004},
doi = {10.4064/fm182-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-3-3/}
}
TY - JOUR AU - Manuel Stadlbauer TI - The return sequence of the Bowen–Series map for punctured surfaces JO - Fundamenta Mathematicae PY - 2004 SP - 221 EP - 240 VL - 182 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-3-3/ DO - 10.4064/fm182-3-3 LA - en ID - 10_4064_fm182_3_3 ER -
Manuel Stadlbauer. The return sequence of the Bowen–Series map for punctured surfaces. Fundamenta Mathematicae, Tome 182 (2004) no. 3, pp. 221-240. doi: 10.4064/fm182-3-3
Cité par Sources :