$F_{\sigma}$-mappings and the invariance of absolute Borel classes
Fundamenta Mathematicae, Tome 182 (2004) no. 3, pp. 193-204
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that $F_\sigma$-mappings preserve absolute Borel classes,
which improves results of R. W. Hansell, J. E. Jayne and C. A. Rogers.
The proof is based on the fact that any $F_\sigma$-mapping $f:X\to Y$
of an absolute Suslin metric space $X$ onto an absolute Suslin metric
space $Y$ becomes a piecewise perfect mapping when restricted to
a suitable $F_\sigma$-set $X_\infty\subset X$ satisfying $f(X_\infty)=Y$.
Keywords:
proved sigma mappings preserve absolute borel classes which improves results hansell jayne rogers proof based sigma mapping absolute suslin metric space absolute suslin metric space becomes piecewise perfect mapping restricted suitable sigma set infty subset satisfying infty
Affiliations des auteurs :
Petr Holický 1 ; Jiří Spurný 1
@article{10_4064_fm182_3_1,
author = {Petr Holick\'y and Ji\v{r}{\'\i} Spurn\'y},
title = {$F_{\sigma}$-mappings and the invariance of absolute {Borel} classes},
journal = {Fundamenta Mathematicae},
pages = {193--204},
publisher = {mathdoc},
volume = {182},
number = {3},
year = {2004},
doi = {10.4064/fm182-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-3-1/}
}
TY - JOUR
AU - Petr Holický
AU - Jiří Spurný
TI - $F_{\sigma}$-mappings and the invariance of absolute Borel classes
JO - Fundamenta Mathematicae
PY - 2004
SP - 193
EP - 204
VL - 182
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-3-1/
DO - 10.4064/fm182-3-1
LA - en
ID - 10_4064_fm182_3_1
ER -
Petr Holický; Jiří Spurný. $F_{\sigma}$-mappings and the invariance of absolute Borel classes. Fundamenta Mathematicae, Tome 182 (2004) no. 3, pp. 193-204. doi: 10.4064/fm182-3-1
Cité par Sources :