Bounded geometry of quadrilaterals
and variation of multipliers for rational maps
Fundamenta Mathematicae, Tome 182 (2004) no. 2, pp. 137-150
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $Q$ be the unit square in the plane and $h: Q \to h(Q)$ a quasiconformal map. When $h$ is conformal off a certain self-similar set, the modulus of $h(Q)$ is bounded independent of $h$. We apply this observation to give explicit estimates for the variation of multipliers of repelling fixed points under a “spinning” quasiconformal deformation of a particular cubic polynomial.
Keywords:
unit square plane quasiconformal map conformal off certain self similar set modulus bounded independent apply observation explicit estimates variation multipliers repelling fixed points under spinning quasiconformal deformation particular cubic polynomial
Affiliations des auteurs :
Kevin M. Pilgrim 1
@article{10_4064_fm182_2_4,
author = {Kevin M. Pilgrim},
title = {Bounded geometry of quadrilaterals
and variation of multipliers for rational maps},
journal = {Fundamenta Mathematicae},
pages = {137--150},
publisher = {mathdoc},
volume = {182},
number = {2},
year = {2004},
doi = {10.4064/fm182-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-4/}
}
TY - JOUR AU - Kevin M. Pilgrim TI - Bounded geometry of quadrilaterals and variation of multipliers for rational maps JO - Fundamenta Mathematicae PY - 2004 SP - 137 EP - 150 VL - 182 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-4/ DO - 10.4064/fm182-2-4 LA - en ID - 10_4064_fm182_2_4 ER -
Kevin M. Pilgrim. Bounded geometry of quadrilaterals and variation of multipliers for rational maps. Fundamenta Mathematicae, Tome 182 (2004) no. 2, pp. 137-150. doi: 10.4064/fm182-2-4
Cité par Sources :