Supercompactness and partial level by level equivalence
between strong compactness and strongness
Fundamenta Mathematicae, Tome 182 (2004) no. 2, pp. 123-136
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We force and construct a model containing supercompact cardinals in which, for any measurable cardinal $\delta $ and any ordinal $\alpha $ below the least beth fixed point above $\delta $, if $\delta ^{+ \alpha }$ is regular, $\delta $ is $\delta ^{+ \alpha }$ strongly compact iff $\delta $ is $\delta + \alpha + 1$ strong, except possibly if $\delta $ is a limit of cardinals $\gamma $ which are $\delta ^{+ \alpha }$ strongly compact. The choice of the least beth fixed point above $\delta $ as our bound on $\alpha $ is arbitrary, and other bounds are possible.
Keywords:
force construct model containing supercompact cardinals which measurable cardinal delta ordinal alpha below least beth fixed point above delta delta alpha regular delta delta alpha strongly compact delta delta alpha strong except possibly delta limit cardinals gamma which delta alpha strongly compact choice least beth fixed point above delta bound alpha arbitrary other bounds possible
Affiliations des auteurs :
Arthur W. Apter 1
@article{10_4064_fm182_2_3,
author = {Arthur W. Apter},
title = {Supercompactness and partial level by level equivalence
between strong compactness and strongness},
journal = {Fundamenta Mathematicae},
pages = {123--136},
publisher = {mathdoc},
volume = {182},
number = {2},
year = {2004},
doi = {10.4064/fm182-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-3/}
}
TY - JOUR AU - Arthur W. Apter TI - Supercompactness and partial level by level equivalence between strong compactness and strongness JO - Fundamenta Mathematicae PY - 2004 SP - 123 EP - 136 VL - 182 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-3/ DO - 10.4064/fm182-2-3 LA - en ID - 10_4064_fm182_2_3 ER -
%0 Journal Article %A Arthur W. Apter %T Supercompactness and partial level by level equivalence between strong compactness and strongness %J Fundamenta Mathematicae %D 2004 %P 123-136 %V 182 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-3/ %R 10.4064/fm182-2-3 %G en %F 10_4064_fm182_2_3
Arthur W. Apter. Supercompactness and partial level by level equivalence between strong compactness and strongness. Fundamenta Mathematicae, Tome 182 (2004) no. 2, pp. 123-136. doi: 10.4064/fm182-2-3
Cité par Sources :