Finite-to-one maps and dimension
Fundamenta Mathematicae, Tome 182 (2004) no. 2, pp. 95-106.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that for every at most $k$-to-one closed continuous map $f$ from a non-empty $n$-dimensional metric space $X$, there exists a closed continuous map $g$ from a zero-dimensional metric space onto $X$ such that the composition $f\circ g$ is an at most $(n+k)$-to-one map. This implies that $f$ is a composition of $n+k-1$ simple ($=$ at most two-to-one) closed continuous maps. Stronger conclusions are obtained for maps from Anderson–Choquet spaces and ones that satisfy W. Hurewicz's condition $(\alpha)$. The main tool is a certain extension of the Lebesgue–\v{C}ech dimension to finite-to-one closed continuous maps.
DOI : 10.4064/fm182-2-1
Keywords: shown every k to one closed continuous map nbsp non empty n dimensional metric space nbsp there exists closed continuous map nbsp zero dimensional metric space nbsp composition circ to one map implies composition k simple two to one closed continuous maps stronger conclusions obtained maps anderson choquet spaces satisfy nbsp hurewiczs condition nbsp alpha main tool certain extension lebesgue ech dimension finite to one closed continuous maps

Jerzy Krzempek 1

1 Institute of Mathematics Silesian University of Technology Kaszubska 23 44-100 Gliwice, Poland
@article{10_4064_fm182_2_1,
     author = {Jerzy Krzempek},
     title = {Finite-to-one maps and dimension},
     journal = {Fundamenta Mathematicae},
     pages = {95--106},
     publisher = {mathdoc},
     volume = {182},
     number = {2},
     year = {2004},
     doi = {10.4064/fm182-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-1/}
}
TY  - JOUR
AU  - Jerzy Krzempek
TI  - Finite-to-one maps and dimension
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 95
EP  - 106
VL  - 182
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-1/
DO  - 10.4064/fm182-2-1
LA  - en
ID  - 10_4064_fm182_2_1
ER  - 
%0 Journal Article
%A Jerzy Krzempek
%T Finite-to-one maps and dimension
%J Fundamenta Mathematicae
%D 2004
%P 95-106
%V 182
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-1/
%R 10.4064/fm182-2-1
%G en
%F 10_4064_fm182_2_1
Jerzy Krzempek. Finite-to-one maps and dimension. Fundamenta Mathematicae, Tome 182 (2004) no. 2, pp. 95-106. doi : 10.4064/fm182-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-1/

Cité par Sources :