Complexity of curves
Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 79-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that each of the classes of hereditarily locally connected, finitely Suslinian, and Suslinian continua is $\Pi_1^1$-complete, while the class of regular continua is $\Pi_0^4$-complete.
DOI : 10.4064/fm182-1-4
Keywords: each classes hereditarily locally connected finitely suslinian suslinian continua complete while class regular continua complete

Udayan B. Darji 1 ; Alberto Marcone 2

1 Department of Mathematics University of Louisville 224 Natural Sciences Building Louisville, KY 40292, U.S.A.
2 Dipartimento di Matematica e Informatica Università di Udine Via delle Scienze 208 33100 Udine, Italy
@article{10_4064_fm182_1_4,
     author = {Udayan B. Darji and Alberto Marcone},
     title = {Complexity of curves},
     journal = {Fundamenta Mathematicae},
     pages = {79--93},
     publisher = {mathdoc},
     volume = {182},
     number = {1},
     year = {2004},
     doi = {10.4064/fm182-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-4/}
}
TY  - JOUR
AU  - Udayan B. Darji
AU  - Alberto Marcone
TI  - Complexity of curves
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 79
EP  - 93
VL  - 182
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-4/
DO  - 10.4064/fm182-1-4
LA  - en
ID  - 10_4064_fm182_1_4
ER  - 
%0 Journal Article
%A Udayan B. Darji
%A Alberto Marcone
%T Complexity of curves
%J Fundamenta Mathematicae
%D 2004
%P 79-93
%V 182
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-4/
%R 10.4064/fm182-1-4
%G en
%F 10_4064_fm182_1_4
Udayan B. Darji; Alberto Marcone. Complexity of curves. Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 79-93. doi : 10.4064/fm182-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-4/

Cité par Sources :