A Brouwer-like theorem for orientation reversing
homeomorphisms of the sphere
Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 1-40
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We provide a topological proof that each orientation
reversing homeomorphism of the 2-sphere which has a point of
period $k \geq 3$ also has a point of period 2. Moreover if such
a $k$-periodic point can be chosen arbitrarily close to an
isolated fixed point $o$ then the same is true for the
2-periodic point. We also strengthen this result by
proving that if
an orientation reversing homeomorphism $h$ of the sphere has no
2-periodic point then the complement of the fixed point set can
be covered by invariant open sets where $h$ is conjugate either
to the map $(x,y) \mapsto (x+1,-y)$ or to the map $(x,y) \mapsto
\frac{1}{2}(x,-y)$.
Keywords:
provide topological proof each orientation reversing homeomorphism sphere which has point period geq has point period moreover k periodic point chosen arbitrarily close isolated fixed point periodic point strengthen result proving orientation reversing homeomorphism sphere has periodic point complement fixed point set covered invariant sets where conjugate either map mapsto y map mapsto frac y
Affiliations des auteurs :
Marc Bonino 1
@article{10_4064_fm182_1_1,
author = {Marc Bonino},
title = {A {Brouwer-like} theorem for orientation reversing
homeomorphisms of the sphere},
journal = {Fundamenta Mathematicae},
pages = {1--40},
publisher = {mathdoc},
volume = {182},
number = {1},
year = {2004},
doi = {10.4064/fm182-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-1/}
}
TY - JOUR AU - Marc Bonino TI - A Brouwer-like theorem for orientation reversing homeomorphisms of the sphere JO - Fundamenta Mathematicae PY - 2004 SP - 1 EP - 40 VL - 182 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-1/ DO - 10.4064/fm182-1-1 LA - en ID - 10_4064_fm182_1_1 ER -
Marc Bonino. A Brouwer-like theorem for orientation reversing homeomorphisms of the sphere. Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 1-40. doi: 10.4064/fm182-1-1
Cité par Sources :