Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Márton Elekes 1 ; Juris Steprāns 2
@article{10_4064_fm181_1_4, author = {M\'arton Elekes and Juris Stepr\={a}ns}, title = {Less than $2^{\omega}$ many translates of a compact nullset may cover the real line}, journal = {Fundamenta Mathematicae}, pages = {89--96}, publisher = {mathdoc}, volume = {181}, number = {1}, year = {2004}, doi = {10.4064/fm181-1-4}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/} }
TY - JOUR AU - Márton Elekes AU - Juris Steprāns TI - Less than $2^{\omega}$ many translates of a compact nullset may cover the real line JO - Fundamenta Mathematicae PY - 2004 SP - 89 EP - 96 VL - 181 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/ DO - 10.4064/fm181-1-4 LA - en ID - 10_4064_fm181_1_4 ER -
%0 Journal Article %A Márton Elekes %A Juris Steprāns %T Less than $2^{\omega}$ many translates of a compact nullset may cover the real line %J Fundamenta Mathematicae %D 2004 %P 89-96 %V 181 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/ %R 10.4064/fm181-1-4 %G en %F 10_4064_fm181_1_4
Márton Elekes; Juris Steprāns. Less than $2^{\omega}$ many translates of a compact nullset may cover the real line. Fundamenta Mathematicae, Tome 181 (2004) no. 1, pp. 89-96. doi : 10.4064/fm181-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/
Cité par Sources :