Márton Elekes  1 ; Juris Steprāns  2
@article{10_4064_fm181_1_4,
author = {M\'arton Elekes and Juris Stepr\={a}ns},
title = {Less than $2^{\omega}$ many translates of a compact
nullset may cover the real line},
journal = {Fundamenta Mathematicae},
pages = {89--96},
year = {2004},
volume = {181},
number = {1},
doi = {10.4064/fm181-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/}
}
TY - JOUR
AU - Márton Elekes
AU - Juris Steprāns
TI - Less than $2^{\omega}$ many translates of a compact
nullset may cover the real line
JO - Fundamenta Mathematicae
PY - 2004
SP - 89
EP - 96
VL - 181
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/
DO - 10.4064/fm181-1-4
LA - en
ID - 10_4064_fm181_1_4
ER -
%0 Journal Article
%A Márton Elekes
%A Juris Steprāns
%T Less than $2^{\omega}$ many translates of a compact
nullset may cover the real line
%J Fundamenta Mathematicae
%D 2004
%P 89-96
%V 181
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/
%R 10.4064/fm181-1-4
%G en
%F 10_4064_fm181_1_4
Márton Elekes; Juris Steprāns. Less than $2^{\omega}$ many translates of a compact
nullset may cover the real line. Fundamenta Mathematicae, Tome 181 (2004) no. 1, pp. 89-96. doi: 10.4064/fm181-1-4
Cité par Sources :