Less than $2^{\omega}$ many translates of a compact nullset may cover the real line
Fundamenta Mathematicae, Tome 181 (2004) no. 1, pp. 89-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We answer a question of Darji and Keleti by proving that there exists a compact set $C_0\subset\mathbb R$ of measure zero such that for every perfect set $P\subset\mathbb R$ there exists $x\in\mathbb R$ such that $(C_0+x)\cap P$ is uncountable. Using this $C_0$ we answer a question of Gruenhage by showing that it is consistent with ZFC (as it follows e.g. from ${\rm cof}({\cal N})2^\omega$) that less than $2^\omega$ many translates of a compact set of measure zero can cover $\mathbb R$.
DOI : 10.4064/fm181-1-4
Keywords: answer question darji keleti proving there exists compact set subset mathbb measure zero every perfect set subset mathbb there exists mathbb cap uncountable using answer question gruenhage showing consistent zfc follows cof cal omega omega many translates compact set measure zero cover nbsp mathbb

Márton Elekes 1 ; Juris Steprāns 2

1 Rényi Alfréd Institute Reáltanoda u. 13-15 Budapest, 1053, Hungary
2 Department of Mathematics York University Toronto, Ontario M3J 1P3, Canada
@article{10_4064_fm181_1_4,
     author = {M\'arton Elekes and Juris Stepr\={a}ns},
     title = {Less than $2^{\omega}$ many translates of a compact
nullset may cover the real line},
     journal = {Fundamenta Mathematicae},
     pages = {89--96},
     publisher = {mathdoc},
     volume = {181},
     number = {1},
     year = {2004},
     doi = {10.4064/fm181-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/}
}
TY  - JOUR
AU  - Márton Elekes
AU  - Juris Steprāns
TI  - Less than $2^{\omega}$ many translates of a compact
nullset may cover the real line
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 89
EP  - 96
VL  - 181
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/
DO  - 10.4064/fm181-1-4
LA  - en
ID  - 10_4064_fm181_1_4
ER  - 
%0 Journal Article
%A Márton Elekes
%A Juris Steprāns
%T Less than $2^{\omega}$ many translates of a compact
nullset may cover the real line
%J Fundamenta Mathematicae
%D 2004
%P 89-96
%V 181
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/
%R 10.4064/fm181-1-4
%G en
%F 10_4064_fm181_1_4
Márton Elekes; Juris Steprāns. Less than $2^{\omega}$ many translates of a compact
nullset may cover the real line. Fundamenta Mathematicae, Tome 181 (2004) no. 1, pp. 89-96. doi : 10.4064/fm181-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-4/

Cité par Sources :