Extensions with the approximation and cover properties have no new large cardinals
Fundamenta Mathematicae, Tome 180 (2003) no. 3, pp. 257-277.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If an extension $V\subseteq{\overline{V}}$ satisfies the $\delta$ approximation and cover properties for classes and $V$ is a class in ${\overline{V}}$, then every suitably closed embedding $j:{\overline{V}}\to\overline{N}$ in ${\overline{V}}$ with critical point above $\delta$ restricts to an embedding $j{\upharpoonright} V$ amenable to the ground model $V$. In such extensions, therefore, there are no new large cardinals above $\delta$. This result extends work in \cite{Hamkins2001:GapForcing}.
DOI : 10.4064/fm180-3-4
Keywords: extension subseteq overline satisfies delta approximation cover properties classes class overline every suitably closed embedding overline overline overline critical point above delta restricts embedding upharpoonright amenable ground model nbsp extensions therefore there large cardinals above delta result extends work cite hamkins gapforcing

Joel David Hamkins 1

1 The Graduate Center of The City University of New York Mathematics Program 365 Fifth Avenue New York, NY 10016, U.S.A.
@article{10_4064_fm180_3_4,
     author = {Joel David Hamkins},
     title = {Extensions with the approximation and cover properties have no new 
large cardinals},
     journal = {Fundamenta Mathematicae},
     pages = {257--277},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2003},
     doi = {10.4064/fm180-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-4/}
}
TY  - JOUR
AU  - Joel David Hamkins
TI  - Extensions with the approximation and cover properties have no new 
large cardinals
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 257
EP  - 277
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-4/
DO  - 10.4064/fm180-3-4
LA  - en
ID  - 10_4064_fm180_3_4
ER  - 
%0 Journal Article
%A Joel David Hamkins
%T Extensions with the approximation and cover properties have no new 
large cardinals
%J Fundamenta Mathematicae
%D 2003
%P 257-277
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-4/
%R 10.4064/fm180-3-4
%G en
%F 10_4064_fm180_3_4
Joel David Hamkins. Extensions with the approximation and cover properties have no new 
large cardinals. Fundamenta Mathematicae, Tome 180 (2003) no. 3, pp. 257-277. doi : 10.4064/fm180-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-4/

Cité par Sources :