Weak Wecken's theorem for periodic points in dimension 3
Fundamenta Mathematicae, Tome 180 (2003) no. 3, pp. 223-239
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that a self-map $f : M \to M$ of a compact PL-manifold
of dimension $\ge 3 $ is homotopic to a map with no periodic
points of period $n$ iff the Nielsen numbers $N(f^k)$ for $k$ dividing
$n$ all vanish. This generalizes the result from \cite{JeAnn} to
dimension $3$.
Keywords:
prove self map compact pl manifold dimension homotopic map periodic points period nielsen numbers dividing vanish generalizes result cite jeann dimension nbsp
Affiliations des auteurs :
Jerzy Jezierski 1
@article{10_4064_fm180_3_2,
author = {Jerzy Jezierski},
title = {Weak {Wecken's} theorem for periodic points in dimension 3},
journal = {Fundamenta Mathematicae},
pages = {223--239},
year = {2003},
volume = {180},
number = {3},
doi = {10.4064/fm180-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-2/}
}
Jerzy Jezierski. Weak Wecken's theorem for periodic points in dimension 3. Fundamenta Mathematicae, Tome 180 (2003) no. 3, pp. 223-239. doi: 10.4064/fm180-3-2
Cité par Sources :