Weak Wecken's theorem for periodic points in dimension 3
Fundamenta Mathematicae, Tome 180 (2003) no. 3, pp. 223-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a self-map $f : M \to M$ of a compact PL-manifold of dimension $\ge 3 $ is homotopic to a map with no periodic points of period $n$ iff the Nielsen numbers $N(f^k)$ for $k$ dividing $n$ all vanish. This generalizes the result from \cite{JeAnn} to dimension $3$.
DOI : 10.4064/fm180-3-2
Keywords: prove self map compact pl manifold dimension homotopic map periodic points period nielsen numbers dividing vanish generalizes result cite jeann dimension nbsp

Jerzy Jezierski 1

1 Institute of Mathematics University of Agriculture Nowoursynowska 159 02-787 Warszawa, Poland
@article{10_4064_fm180_3_2,
     author = {Jerzy Jezierski},
     title = {Weak {Wecken's} theorem for periodic points in dimension 3},
     journal = {Fundamenta Mathematicae},
     pages = {223--239},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2003},
     doi = {10.4064/fm180-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-2/}
}
TY  - JOUR
AU  - Jerzy Jezierski
TI  - Weak Wecken's theorem for periodic points in dimension 3
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 223
EP  - 239
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-2/
DO  - 10.4064/fm180-3-2
LA  - en
ID  - 10_4064_fm180_3_2
ER  - 
%0 Journal Article
%A Jerzy Jezierski
%T Weak Wecken's theorem for periodic points in dimension 3
%J Fundamenta Mathematicae
%D 2003
%P 223-239
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-2/
%R 10.4064/fm180-3-2
%G en
%F 10_4064_fm180_3_2
Jerzy Jezierski. Weak Wecken's theorem for periodic points in dimension 3. Fundamenta Mathematicae, Tome 180 (2003) no. 3, pp. 223-239. doi : 10.4064/fm180-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-2/

Cité par Sources :